
Conclusion

Abstract

Performance and Example

Methodology

Potato: A Data-Oriented Programming 3D Simulator
for Large-Scale Heterogeneous Swarm Robotics

Jinjie Li1, Liang Han2, Haoyang Yu2, Zhaotian Wang2, Pengzhi Yang3, Ziwei Yan2, Zhang Ren1

1School of Automation Science and Electrical Engineering, Beihang University
2Sino-French Engineer School, Beihang University
3Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology

Homepage: https://jinjie.li/

• Authors cannot attend the conference
because of the visa problem

• Please email us at lijinjie@buaa.edu.cn
if you are interested!

• Zoom: 784 0450 7759 PSW: 4yHsGy

Fig. 4. Running time as a function of number of
agents based on the log coordinates. The time
remains stable under 5,000 quadrotors.

Fig. 5. Demo: one paper accepted
by ICRA 2023 is supported by this
simulator. Paper link:

• Data-Oriented Programming is
suitable for multi-agent simulation

• Written in PyTorch and accelerated
by TorchScript is a great balance of
flexibility and efficiency

Get the paper!

• Existing multi-agent simulators  Object-
Oriented Programming (OOP)  CPU

• This simulator:
• homogeneous agents  Data-Oriented

Programming (DOP)  GPU
• heterogeneous agents multi-process

• The simulator is developed using PyTorch,
and is further accelerated using
TorchScript, a tool from AI community for
model deployment

• Simulating 5,000 nonlinear quadrotors for
1 round  less than 2ms

Fig. 1. Object-Oriented Programming (OOP) Fig. 2. Data-Oriented Programming (DOP)

• OOP: Agents are computed through for-loops, multi-threads, or multi-processes. However,
since a desktop CPU has 10-20 threads, each CPU thread computes multiple agents serially
in a loop.  computational speed increases almost linearly with the number of agents

• DOP: grouping the computations of homogeneous agents together and parallelizing them
in batches using tensors, which can be computed directly on GPUs.  computational
speed remains almost the same with the number of agents

Fig. 3. The system structure of the proposed simulator

The proposed simulator consists of a
Simulation Loop where all agents’
states are transmitted to 4 directions.

• Direction ① sends the states to
the Algorithm Side via an algorithm
communication subprocess, which
uses this information for
evaluation and decision making.

• Direction ② calculates collision
and detection results, which are
sent to computational
subprocesses for handling.

• Direction ③ computes low-level
algorithms and dynamics for
heterogeneous agents, and sends
the updated states back to the
main process to refresh the all-
states data.

• Direction ④ uses a viewer
communication subprocess to
visualize all agents’ motions, and
users can manipulate the mouse to
influence the agents’ behaviors.

mailto:lijinjie@buaa.edu.cn

	幻灯片编号 1

