
Conclusion

Abstract

Performance and Example

Methodology

Potato: A Data-Oriented Programming 3D Simulator
for Large-Scale Heterogeneous Swarm Robotics

Jinjie Li1, Liang Han2, Haoyang Yu2, Zhaotian Wang2, Pengzhi Yang3, Ziwei Yan2, Zhang Ren1

1School of Automation Science and Electrical Engineering, Beihang University
2Sino-French Engineer School, Beihang University
3Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology

Homepage: https://jinjie.li/

• Authors cannot attend the conference
because of the visa problem

• Please email us at lijinjie@buaa.edu.cn
if you are interested!

• Zoom: 784 0450 7759 PSW: 4yHsGy

Fig. 4. Running time as a function of number of
agents based on the log coordinates. The time
remains stable under 5,000 quadrotors.

Fig. 5. Demo: one paper accepted
by ICRA 2023 is supported by this
simulator. Paper link:

• Data-Oriented Programming is
suitable for multi-agent simulation

• Written in PyTorch and accelerated
by TorchScript is a great balance of
flexibility and efficiency

Get the paper!

• Existing multi-agent simulators Object-
Oriented Programming (OOP) CPU

• This simulator:
• homogeneous agents Data-Oriented

Programming (DOP) GPU
• heterogeneous agents multi-process

• The simulator is developed using PyTorch,
and is further accelerated using
TorchScript, a tool from AI community for
model deployment

• Simulating 5,000 nonlinear quadrotors for
1 round less than 2ms

Fig. 1. Object-Oriented Programming (OOP) Fig. 2. Data-Oriented Programming (DOP)

• OOP: Agents are computed through for-loops, multi-threads, or multi-processes. However,
since a desktop CPU has 10-20 threads, each CPU thread computes multiple agents serially
in a loop. computational speed increases almost linearly with the number of agents

• DOP: grouping the computations of homogeneous agents together and parallelizing them
in batches using tensors, which can be computed directly on GPUs. computational
speed remains almost the same with the number of agents

Fig. 3. The system structure of the proposed simulator

The proposed simulator consists of a
Simulation Loop where all agents’
states are transmitted to 4 directions.

• Direction ① sends the states to
the Algorithm Side via an algorithm
communication subprocess, which
uses this information for
evaluation and decision making.

• Direction ② calculates collision
and detection results, which are
sent to computational
subprocesses for handling.

• Direction ③ computes low-level
algorithms and dynamics for
heterogeneous agents, and sends
the updated states back to the
main process to refresh the all-
states data.

• Direction ④ uses a viewer
communication subprocess to
visualize all agents’ motions, and
users can manipulate the mouse to
influence the agents’ behaviors.

mailto:lijinjie@buaa.edu.cn

	幻灯片编号 1

