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QuadSwarm: A fast and high-parallelizable simulator with a level
acceptable for transferring policies learned in the simulator to
reality.
ü Supports Crazyflie 2.x
ü Demonstrated sim2real transferability for single and multi-

quadrotor teams
ü Supports Per-rotor thrust control
ü Fast single-threaded throughput and scales with additional

compute
ü A diverse collection of learning scenarios
ü 100% written in Python, and sped up with Numba
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System Overview

Quadrotor Dynamics
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Parameter Table
x Position
g Gravity vector
R Rotation matrix
f Total thrust vector
m Mass
v Linear velocity
ω; ω× Angular velocity; Skew matrix of the ω
I Inertia matrix
τ, τp, 
τth

Torque: total, along z-axis, produced by 
motor trusts

!𝑢, $𝑢𝑓 Rotor angular velocity: normalized, filtered
𝜖, 𝛼, k fixed value
𝛿𝑝𝑜𝑠, 
𝛿𝑥𝑖

Relative position between quadrotors; 
Relative position to the goal

)𝑥𝑖𝐾 Relative position between the quadrotor 
and its Kth nearest  neighbor
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Motor Lag
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f = fmax · (ûf )2 + ✏f
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Final Thrust

Collision Simulation & Aerodynamics
Quadrotor & Quadrotor
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ncol =
x1 � x2

kx1 � x2k2
ṽ = (v2 · ncol � v1 · ncol) · ncol

v1  ↵1(v1 + ṽ + ✏v1) v2  ↵2(v2 � ṽ + ✏v2)

!1  !1 + ✏!1 !2  !2 + ✏!2
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Quadrotor & Walls / Ceiling
Similar to quadrotor & quadrotor collision model, except 
the collision updates are only applied to the quadrotor.
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fxy  max(fxy � µ(mg � fz), 0)
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Quadrotor & Ground
||v||2 = 0
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fxy  fxy � µ(mg � fz)
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||v||2 > 0
Downwash
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ẍ = k1(k2�pos + b1) + ✏d !̇ = ✏!d
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ẍ = k1(k2�pos + b1) + ✏d !̇ = ✏!d
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Observations
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[�xi, vi, Ri,!i, [x̃i1, ṽi1, ..., ˜xiK , ˜viK ]]
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Apply when the relative positions of quadrotors are 
within certain range

Observation Noise 
ϵx = U 0,	5e!" 	 ϵv = U 0,	1e!# 	 ϵ𝜔 = U(0,	1.75e!$ )

Training Scenarios

Reward Components

RL Library Interface

Simulation Speed
To balance speed, readability, and flexibility: 
1) Use Python to implement the minimum requirements of physics simulation and 

rendering
2) Use Numba to speed up physics simulations
3) Decouple rendering from physics simulations

Examples
QuadSwarm is used as the main simulation platform in two projects that 
demonstrated the transfer of learned control policies on single and multiple 
quadrotors. 
For a single quadrotor [2], we showed how to learn a policy to stabilize multiple 
different quadrotors with domain randomization.
For multiple quadrotors [3], we showed how to learn a policy to control up to 128 
quadrotors to approach their goals while avoiding collisions in diverse scenarios.
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Integrated with Sample-Factory [1].
Supports PPO (single-agent) and IPPO (multi-agents)

Support reward based on:
Distance to the goal 2) Linear velocity 3)  Angular velocity
4)  Actions  5)  Change of actions         6) Rotation
7) Interaction with walls, ceiling, and ground  8) Interaction with other quadrotors

Static formations
Dynamic formations
    1) Dynamic goals   2) Swap goals  
    3) Shrink & Expand   4) Swarm-vs-Swarm
Evader Pursuit
    1) 3D Lissajous curve  2) Bezier curve 
Support formations: circle, grid, sphere, cylinder, cube
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