
QuadSwarm: A Modular Multi-Quadrotor Simulator for Deep
Reinforcement Learning with Direct Thrust Control

Zhehui Huang, Sumeet Batra, Tao Chen, Rahul Krupani, Tushar Kumar
Artem Molchanov, Aleksei Petrenko, James A. Preiss, Zhaojing Yang, Gaurav S. Sukhatme

University of Southern California

QuadSwarm: A fast and high-parallelizable simulator with a level
acceptable for transferring policies learned in the simulator to
reality.
ü Supports Crazyflie 2.x
ü Demonstrated sim2real transferability for single and multi-

quadrotor teams
ü Supports Per-rotor thrust control
ü Fast single-threaded throughput and scales with additional

compute
ü A diverse collection of learning scenarios
ü 100% written in Python, and sped up with Numba

Highlights

System Overview

Quadrotor Dynamics

test

zhehuihu

May 2023

1 Introduction

ẍ = g +
Rf

m
Ṙ = !⇥R

!̇ = I�1(⌧ � ! ⇥ (I · !)) ⌧ = ⌧p + ⌧th

1

Parameter Table
x Position
g Gravity vector
R Rotation matrix
f Total thrust vector
m Mass
v Linear velocity
ω; ω× Angular velocity; Skew matrix of the ω
I Inertia matrix
τ, τp,
τth

Torque: total, along z-axis, produced by
motor trusts

!𝑢, $𝑢𝑓 Rotor angular velocity: normalized, filtered
𝜖, 𝛼, k fixed value
𝛿𝑝𝑜𝑠,
𝛿𝑥𝑖

Relative position between quadrotors;
Relative position to the goal

)𝑥𝑖𝐾 Relative position between the quadrotor
and its Kth nearest neighbor

test

zhehuihu

May 2023

1 Introduction

û(t) =

q
f̂ (t) û(t)

f = ↵lag(û
(t) � û(t�1)

f) + û(t�1)
f

1

Motor Lag

test

zhehuihu

May 2023

1 Introduction
f = fmax · (ûf)2 + ✏f

1

Final Thrust

Collision Simulation & Aerodynamics
Quadrotor & Quadrotor

test

zhehuihu

May 2023

1 Introduction

ncol =
x1 � x2

kx1 � x2k2
ṽ = (v2 · ncol � v1 · ncol) · ncol

v1 ↵1(v1 + ṽ + ✏v1) v2 ↵2(v2 � ṽ + ✏v2)

!1 !1 + ✏!1 !2 !2 + ✏!2

1

Quadrotor & Walls / Ceiling
Similar to quadrotor & quadrotor collision model, except
the collision updates are only applied to the quadrotor.

test

zhehuihu

May 2023

1 Introduction
fxy max(fxy � µ(mg � fz), 0)

1

Quadrotor & Ground
||v||2 = 0

test

zhehuihu

May 2023

1 Introduction
fxy fxy � µ(mg � fz)

1

||v||2 > 0
Downwash

test

zhehuihu

May 2023

1 Introduction

ẍ = k1(k2�pos + b1) + ✏d !̇ = ✏!d

1

test

zhehuihu

May 2023

1 Introduction

ẍ = k1(k2�pos + b1) + ✏d !̇ = ✏!d

1

Observations

test

zhehuihu

May 2023

1 Introduction

[�xi, vi, Ri,!i, [x̃i1, ṽi1, ..., ˜xiK , ˜viK]]

1

Apply when the relative positions of quadrotors are
within certain range

Observation Noise
ϵx = U 0,	5e!" 	 ϵv = U 0,	1e!# 	 ϵ𝜔 = U(0,	1.75e!$)

Training Scenarios

Reward Components

RL Library Interface

Simulation Speed
To balance speed, readability, and flexibility:
1) Use Python to implement the minimum requirements of physics simulation and

rendering
2) Use Numba to speed up physics simulations
3) Decouple rendering from physics simulations

Examples
QuadSwarm is used as the main simulation platform in two projects that
demonstrated the transfer of learned control policies on single and multiple
quadrotors.
For a single quadrotor [2], we showed how to learn a policy to stabilize multiple
different quadrotors with domain randomization.
For multiple quadrotors [3], we showed how to learn a policy to control up to 128
quadrotors to approach their goals while avoiding collisions in diverse scenarios.

References
[1] A. Petrenko, Z. Huang, T. Kumar, G.
S. Sukhatme and V. Koltun, “Sample
Factory: Egocentric 3D Control from
Pixels at 100000 FPS with Asynchronous
Reinforcement Learning,” ICML 2020
[2] A. Molchanov, T. Chen, W. H ̈onig, J.
A. Preiss, N. Ayanian, and G. S.
Sukhatme, “Sim-to-(multi)-real: Transfer
of low-level robust control
policies to multiple quadrotors,” IROS
2019
[3] S. Batra, Z. Huang, A. Petrenko, T.
Kumar, A. Molchanov, and G. S.
Sukhatme, “Decentralized control of
quadrotor swarms with end-to-
end deep reinforcement learning, CoRL
2022.

Paper

Integrated with Sample-Factory [1].
Supports PPO (single-agent) and IPPO (multi-agents)

Support reward based on:
Distance to the goal 2) Linear velocity 3) Angular velocity
4) Actions 5) Change of actions 6) Rotation
7) Interaction with walls, ceiling, and ground 8) Interaction with other quadrotors

Static formations
Dynamic formations
 1) Dynamic goals 2) Swap goals
 3) Shrink & Expand 4) Swarm-vs-Swarm
Evader Pursuit
 1) 3D Lissajous curve 2) Bezier curve
Support formations: circle, grid, sphere, cylinder, cube

Quadrotor
Dynamics

Collision
Simulation &
Aerodynamics

Observations RL Library
Interface

Reward
Components

Training
Scenarios

