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Aerial vehicle testing can be highly inefficient and often costly due to the high propensity for 
crashes that is inherent with a flying object. This adds significant complexity to aerial vehicle 
research. Evaluating new control algorithms on hardware can be dangerous, costly, and 
ecologically unfriendly, due to the frequent replacement of components that break in a crash. 
Thus, high-fidelity simulators are a necessity and can expedite the development of novel 
controllers and control techniques. This paper looks to analyze existing aerial vehicle 
simulators and the decision factors that go into selecting a simulator. Additionally, we include 
a discussion of the integration of a simulator we are using for aerial grasping research and the 
advantages and disadvantages of our chosen simulator. 

Abstract
Table I outlines selection criteria and decision factors that are frequently considered when 
comparing aerial vehicle simulators. 

Tables II and III compare the most widely used aerial vehicle simulators using some of the 
selection criteria from Table I. 
➢ Table II compares notable features of the simulation environments.

➢ The four physics engines supported by Gazebo (i.e. ODE, Bullet, DART, and Simbody) 
are labeled as “GazeboPhys”. 

➢ Table III compares sensors that are supported by each simulator.

Aerial Vehicle Simulators Aerial Grasping Gazebo Integration

Selecting a simulator that is best for a particular application space can be very challenging, 
but rewarding when it increases safety and reduces testing time and cost. In this work, we 
discussed some of the prominent robotic simulators for aerial vehicles. We enumerate 
possible decision factors to consider when selecting a simulator and we compare features
and integrated sensors across many widely used simulation packages. Pertaining to our recent 
aerial grasping research, we discussed our considerations when selecting a simulator
and our software integration. Finally, we detailed the main advantages and disadvantages of 
our selected simulator, specific to our research. We hope that this analysis will be
valuable to the community when embarking on aerial vehicle research and selecting a 
simulation environment.

Conclusions

Introduction
Uncrewed Aerial Vehicles (UAVs) are being widely adopted for a variety of use cases and 
industries, such as for agriculture, inspection, mapping, and search and rescue.

We need strong aerial vehicle simulators for a variety of reasons, including:
➢ Unexpected behaviors in hardware experiments can be highly dangerous.
➢ Simulators enable safe, rapid development of algorithms.
➢ Crashes can be costly, detrimental to development timelines, and harmful to the 

environment due to generating waste.
➢ Collecting data on hardware, such as for learning based approaches, can be highly inefficient 

and often impractical. 

In this work, we analyze some of the prominent UAV simulators and key selection criteria and 
decision factors to consider when selecting a simulator. Furthermore, we describe our selection 
process and integration of a simulator we are using for aerial grasping research. 

We aimed to simulate a system that can autonomously detect a target, navigate to that object 
and grasp it and then detect a destination and place the object, all in an unknown environment.

Simulator Selection: Gazebo

We are using a modified Uvify IFO-SX quadrotor with a custom collision tolerant carbon fiber 
foam cage and modular gripper extension package, as seen in Figure 2.

Aerial Grasping Simulator Selection

Figure 1. Our autonomous aerial research 
platform in flight both in simulation and on 

hardware grasping a target object.

(a) Gazebo simulation

(b) Hardware experiment

Figure 2. Autonomously grasping an object in clutter.

Figure 3. Gazebo simulation.

Figure 3 shows our aerial grasping research platform in 
our Gazebo simulation. The vehicle is positioned in front 
of a target object on the table. Projected from the 
vehicle’s RGB camera is an image of the simulated 
camera’s view. 

Gazebo Simulation Advantages
➢ Essential for integrating and tuning our controller with 

the PX4 software stack.
➢ Enabled evaluating performance and debugging issues 

rapidly and then seamlessly transitioning to hardware.
➢ After tuning our controller gains in the simulated 

environment, we found that only minor adjustments 
were required on the real vehicle.

➢ Dramatically reduced hardware testing time. 
➢ Efficient transition from simulation to hardware.

Gazebo Simulation Disadvantages
➢ Images generated in our Gazebo simulation 

environment have low visual fidelity and the 
environments have minimal visual features, as seen in 
Figure 3 and Figure 4(a).

➢ This was prohibitive to running visual odometry and 
object detection in our simulated environment.

➢ Additionally, vision and learning based methods would 
not transfer well from simulation to hardware. 

Figure 4(b) shows an object being detected in the 
Flightmare simulator using Deep Object Pose Estimation 
(DOPE) from [28]. The comparable image in our Gazebo 
simulation, Fig. 4(a), did not yield detections when running 
DOPE, due to the low visual fidelity. 

Moving forward, requiring higher visual fidelity may 
motivate switching simulators or integrating with a second 
simulator for different use cases.

(a) Gazebo simulation

(b) Flightmare simulation

Figure 4. Toy can in Gazebo and 
Flightmare simulation environments. 

DOPE detection (green bounding 
box) in the Flightmare simulation.

Our Priorities
➢ Allow for seamlessly swapping between 

simulation and hardware.
➢ Integration with our flight controller, PX4, 

which highly recommends Gazebo.
➢ Strong physics engine and collision handling.
➢ Ease of integration.
➢ Available sensors.
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