
Survey, Selection, and Integration of Aerial Vehicle Simulators

Cora A. Dimmig and Marin Kobilarov
Johns Hopkins University

Cora Dimmig
Johns Hopkins University
cdimmig@jhu.edu

Contact
[1] A. Ollero, M. Tognon, A. Suarez, D. Lee, and A. Franchi, “Past, present, and future of aerial robotic manipulators,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 626–645, Feb 2022.
[2] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of physics simulators for robotic applications,” IEEE Access, vol. 9, pp. 51 416–51 431, 2021.
[3] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual and physical simulation for autonomous vehicles,” in Field and Service Robotics. Springer, 2018, pp. 621–635.
[4] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare: A flexible quadrotor simulator,” in Conference on Robot Learning. PMLR, 2021, pp. 1147–1157.
[5] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.No.04CH37566), vol. 3, Sep. 2004, pp. 2149–2154 vol.3.
[6] O. Michel, “Cyberbotics Ltd. Webots™: Professional mobile robot simulation,” Int. J. of Adv. Robotic Sys., vol. 1, no. 1, p. 5, 2004.
[7] M. Körber, J. Lange, S. Rediske, S. Steinmann, and R. Glück, “Comparing popular simulation environments in the scope of robotics and reinforcement learning,” arXiv preprint arXiv:2103.04616, 2021.
[8] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2012, pp. 5026–5033.
[9] E. Coumans and Y. Bai, “PyBullet, a python module for physics simulation for games, robotics and machine learning,” 2016. [Online]. Available: https://pybullet.org/
[10] J. Saunders, S. Saeedi, and W. Li, “Autonomous aerial delivery vehicles, a survey of techniques on how aerial package delivery is achieved,” arXiv preprint arXiv:2110.02429, 2022.
[11] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS — a modular gazebo MAV simulator framework,” Robot Operating System (ROS) The Complete Reference (Volume 1), pp. 595–625, 2016.
[12] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “FlightGoggles: Photorealistic sensor simulation for perception-driven robotics using photogrammetry and virtual reality,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Nov 2019, pp. 6941–6948.
[13] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig, “Learning to fly—a gym environment with PyBullet physics for reinforcement learning of multi-agent quadcopter control,” in IEEE/RSJ Int. Conf. on Intell. Robots and Sys. (IROS), Sep. 2021, pp. 7512–7519.
[14] A. Mairaj, A. I. Baba, and A. Y. Javaid, “Application specific drone simulators: Recent advances and challenges,” Simulation Modelling Practice and Theory, vol. 94, pp. 100–117, 2019.

[15] J. Saunders, S. Saeedi, and W. Li, “Parallel reinforcement learning simulation for visual quadrotor navigation,” arXiv preprint arXiv:2209.11094, 2022.
[16] “jMAVSim.” [Online]. Available: https://github.com/PX4/jMAVSim
[17] J. Berndt, “JSBSim: An open source flight dynamics model in C++,” in AIAA Modeling and Sim. Tech. Conf. and Exhibit, 2004, p. 4923.
[18] MATLAB, “UAV toolbox.” [Online]. Available: https://www.mathworks.com/products/uav.html
[19] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous drone racing with deep reinforcement learning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2021, pp. 1205–1212.
[20] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza, “Learning high-speed flight in the wild,” Science Robotics, vol. 6, no. 59, p. eabg5810, 2021.
[21] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza, “Deep drone acrobatics,” arXiv preprint arXiv:2006.05768, 2020.
[22] S.-Y. Shin, Y.-W. Kang, and Y.-G. Kim, “Obstacle avoidance drone by deep reinforcement learning and its racing with human pilot,” Applied Sciences, vol. 9, no. 24, 2019.
[23] Z. Han, Z. Wang, N. Pan, Y. Lin, C. Xu, and F. Gao, “Fast-racing: An open-source strong baseline for SE(3) planning in autonomous drone racing,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8631–8638, Oct 2021.
[24] S. Gronauer, M. Kissel, L. Sacchetto, M. Korte, and K. Diepold, “Using simulation optimization to improve zero-shot policy transfer of quadrotors,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2022, pp. 10 170–10 176.
[25] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld, T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza, “Agilicious: Open-source and open-hardware agile quadrotor for visionbased flight,” Science Robotics, vol. 7, no. 67, p. eabl6259, 2022.
[26] G. Li, X. Liu, and G. Loianno, “RotorTM: A flexible simulator for aerial transportation and manipulation,” arXiv preprint arXiv:2205.05140, 2023.
[27] ROS, “Solidworks to URDF exporter.” [Online]. Available: http://wiki.ros.org/sw urdf exporter
[28] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep object pose estimation for semantic robotic grasping of household objects,” in Conference on Robot Learning (CoRL), 2018.

References

Aerial vehicle testing can be highly inefficient and often costly due to the high propensity for
crashes that is inherent with a flying object. This adds significant complexity to aerial vehicle
research. Evaluating new control algorithms on hardware can be dangerous, costly, and
ecologically unfriendly, due to the frequent replacement of components that break in a crash.
Thus, high-fidelity simulators are a necessity and can expedite the development of novel
controllers and control techniques. This paper looks to analyze existing aerial vehicle
simulators and the decision factors that go into selecting a simulator. Additionally, we include
a discussion of the integration of a simulator we are using for aerial grasping research and the
advantages and disadvantages of our chosen simulator.

Abstract
Table I outlines selection criteria and decision factors that are frequently considered when
comparing aerial vehicle simulators.

Tables II and III compare the most widely used aerial vehicle simulators using some of the
selection criteria from Table I.
➢ Table II compares notable features of the simulation environments.

➢ The four physics engines supported by Gazebo (i.e. ODE, Bullet, DART, and Simbody)
are labeled as “GazeboPhys”.

➢ Table III compares sensors that are supported by each simulator.

Aerial Vehicle Simulators Aerial Grasping Gazebo Integration

Selecting a simulator that is best for a particular application space can be very challenging,
but rewarding when it increases safety and reduces testing time and cost. In this work, we
discussed some of the prominent robotic simulators for aerial vehicles. We enumerate
possible decision factors to consider when selecting a simulator and we compare features
and integrated sensors across many widely used simulation packages. Pertaining to our recent
aerial grasping research, we discussed our considerations when selecting a simulator
and our software integration. Finally, we detailed the main advantages and disadvantages of
our selected simulator, specific to our research. We hope that this analysis will be
valuable to the community when embarking on aerial vehicle research and selecting a
simulation environment.

Conclusions

Introduction
Uncrewed Aerial Vehicles (UAVs) are being widely adopted for a variety of use cases and
industries, such as for agriculture, inspection, mapping, and search and rescue.

We need strong aerial vehicle simulators for a variety of reasons, including:
➢ Unexpected behaviors in hardware experiments can be highly dangerous.
➢ Simulators enable safe, rapid development of algorithms.
➢ Crashes can be costly, detrimental to development timelines, and harmful to the

environment due to generating waste.
➢ Collecting data on hardware, such as for learning based approaches, can be highly inefficient

and often impractical.

In this work, we analyze some of the prominent UAV simulators and key selection criteria and
decision factors to consider when selecting a simulator. Furthermore, we describe our selection
process and integration of a simulator we are using for aerial grasping research.

We aimed to simulate a system that can autonomously detect a target, navigate to that object
and grasp it and then detect a destination and place the object, all in an unknown environment.

Simulator Selection: Gazebo

We are using a modified Uvify IFO-SX quadrotor with a custom collision tolerant carbon fiber
foam cage and modular gripper extension package, as seen in Figure 2.

Aerial Grasping Simulator Selection

Figure 1. Our autonomous aerial research
platform in flight both in simulation and on

hardware grasping a target object.

(a) Gazebo simulation

(b) Hardware experiment

Figure 2. Autonomously grasping an object in clutter.

Figure 3. Gazebo simulation.

Figure 3 shows our aerial grasping research platform in
our Gazebo simulation. The vehicle is positioned in front
of a target object on the table. Projected from the
vehicle’s RGB camera is an image of the simulated
camera’s view.

Gazebo Simulation Advantages
➢ Essential for integrating and tuning our controller with

the PX4 software stack.
➢ Enabled evaluating performance and debugging issues

rapidly and then seamlessly transitioning to hardware.
➢ After tuning our controller gains in the simulated

environment, we found that only minor adjustments
were required on the real vehicle.

➢ Dramatically reduced hardware testing time.
➢ Efficient transition from simulation to hardware.

Gazebo Simulation Disadvantages
➢ Images generated in our Gazebo simulation

environment have low visual fidelity and the
environments have minimal visual features, as seen in
Figure 3 and Figure 4(a).

➢ This was prohibitive to running visual odometry and
object detection in our simulated environment.

➢ Additionally, vision and learning based methods would
not transfer well from simulation to hardware.

Figure 4(b) shows an object being detected in the
Flightmare simulator using Deep Object Pose Estimation
(DOPE) from [28]. The comparable image in our Gazebo
simulation, Fig. 4(a), did not yield detections when running
DOPE, due to the low visual fidelity.

Moving forward, requiring higher visual fidelity may
motivate switching simulators or integrating with a second
simulator for different use cases.

(a) Gazebo simulation

(b) Flightmare simulation

Figure 4. Toy can in Gazebo and
Flightmare simulation environments.

DOPE detection (green bounding
box) in the Flightmare simulation.

Our Priorities
➢ Allow for seamlessly swapping between

simulation and hardware.
➢ Integration with our flight controller, PX4,

which highly recommends Gazebo.
➢ Strong physics engine and collision handling.
➢ Ease of integration.
➢ Available sensors.

	Slide 2

