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Abstract— With the emergence of robots driving or flying
under the canopy of agricultural environments, localization
becomes a problem given that both GPS and traditional,
sparse feature-based place recognition perform poorly in such
environments. This paper proposes an approach, which converts
imagery from an agricultural orchard taken at the below-
canopy level into bird’s-eye-view imagery, essentially generating
a top view of the field indicating the tree positions in the
horizontal plane. This is a step towards registering low- and
high-altitude imagery. Existing state-of-the-art learning-based
methods for such tasks, known as Perspective View to Bird’s
Eye View (PV2BEV) exist for urban scenes, particularly in
the self-driving vehicle domain. Here, existing methods are
evaluated in an agricultural setting, which poses notable chal-
lenges due to lack of structure and variability. We create high-
quality synthetic datasets for the training of networks. We show
preliminary evaluations on both synthetic and real imagery.

I. INTRODUCTION

Agricultural robots are being developed for the full
pipeline of operations, from monitoring through sowing,
weeding, spraying, and harvesting [1]–[4]. Agriculture sens-
ing in the past has been dominated by remote sensing,
starting with satellite imagery and increasingly now over-
canopy drone imagery. However the appearance of au-
tonomous ground robots or low-level drones that work under
the canopy, as well as the ubiquity of phone cameras, raises
the question of how under- and over-canopy imagery can be
matched, see Figure 1.

This registration is useful in a scene model that integrates
data from under- and over-canopy sensors, such as in a Dig-
ital Twin [5]. For example, autonomous agricultural robots
can register live imagery to an apriori map, to retrieve or up-
date mission planning data. Or a farm operator can use phone
imagery to add details to a drone dataset, say to provide
high-resolution ground images showing fruit development to
supplement the aerial view.

One way to attack this problem is to localize the
ground/low-altitude robot accurately enough that ground
imagery can be registered directly with an aerial view in
the same coordinate frame. But this is not straightforward -
GPS has insufficient accuracy at a few meters, while DGPS
is accurate to a few centimeters but is expensive, and for
computer vision a farm environment like an orchard has few
distinctive fixed features plus there is temporal change due
to growth. This motivates our work on using ground-level
imagery to synthesize a bird’s eye view (this paper is focused
specifically on generating a bird’s eye view, but we mention
the matching task in order to provide context).
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(a) Under-canopy view (b) Over-canopy / Bird’s eye
view

Fig. 1: Our test site in the winter

Bird’s eye view images are useful also in the case where
there is no aerial imagery - path planning for a robot is
simpler in a 2D top-view, and the notions of distance and
position are more easily computable and understandable in
this representation; and for tele-robotics including remote
operation or remote oversight, the top-view is more easily
comprehensible to a remote human operator.

Methods for transforming a perspective view to a bird’s
eye view, termed PV2BEV, are recent developments, espe-
cially in the domain of self-driving cars [6]. Our contri-
bution is two-fold - firstly to investigate PV2BEV for an
agricultural environment as opposed to an urban environ-
ment, and secondly to describe a case study of generating a
synthetic dataset of trees, training a PV2BEV model using
Deep Learning, and applying it to both synthetic and real-
world datasets.

II. RELATED WORKS

PV2BEV research is mainly focused on autonomous cars.
The paper proposed by Ma et al. [6] gathers most of the
recognized studies on this topic. Many methods often require
the use of several pieces of equipment such as 360 cameras,
Lidar, IMU, and others. The goal of this project was to
find a technique that required the use of only one camera
and no other equipment. The purpose was also to be able
to install, adapt and test several methods using different
strategies to obtain a BEV from a PV of an agricultural scene.
With these constraints, the research quickly converged on
3 different methods called Monolayout [7], Projecting Your
View Attentively [8] and MonoDETR [9].

The first method, called Monolayout [7], is homography
based. Its network is built to estimate the amodal scene
layout. The amodal scene layout refers to the 3D arrange-
ment of objects and their spatial relationships in the scene,
including both visible and occluded objects that are not fully
visible in the image. Mani et al. [7] proposed a two-stage



architecture for generating amodal layouts. The first stage
uses an encoder-decoder network to estimate the layout,
while the second stage uses two discriminators to validate
the predicted layouts based on road geometries and vehicle
occupancy. The network takes a front-facing camera image
as input and produces a bird’s eye view image that represents
the layout of vehicles in front of the autonomous car.

The second method is called Project Your View Attentively
[8] and is MLP based. This method takes the same input
images as Monolayout and also produces the same type of
output (top-view segmented images). The PYVA method is
based on a GAN framework. It first extracts features from
the input image using an encoder (ResNet). Then a cross-
view transformation module enhances the features for view
projection. In the end, a decoder is used to produce the top-
view mask. The advantage of this method is that it is more
precise in defining the visible (non-occluded) parts of the
objects.

The third method is called MonoDETR [9] and uses a
transformer architecture. It adopts a depth-guided scheme
for aggregating features from the depth-related regions in
the global context. This scheme estimates the density dis-
tribution of objects in a scene from a single image. The
main advantage of this method is that it can detect objects
of different sizes and shapes, as well as partially visible or
hidden objects.

However, this method has some disadvantages in terms
of the output format. The output of MonoDETR represents
the objects (detected cars) by the coordinates of their 3D
bounding boxes. To train the method, it is necessary to
know the bounding boxes of the objects in the dataset.
Their coordinates can be complicated to extract, even when
generating a dataset by simulation. Another disadvantage of
this method is that it takes about eight times longer to train
than Homography and MLP-based methods.

III. SIMULATION-BASED DATA GENERATION

The generation of simulated data for agricultural environ-
ments is the foundation of our work. In order to simulate
agricultural ecosystems, such as orchards and crop plants, we
created a rendering framework. It makes use of the following
elements:

• Cinema-quality synthetic tree and plant models from
SpeedTree [10]

• Topographic information from SwissTopo [11]
• Various small objects to add naturality, from online 3D

model sources
• An in-house Vulkan-based render that can handle large-

scale scenes
The generated dataset consists of a rendering of the 3D

model for a ground-level view and a binary image for the
bird’s eye view. For an example tree model, see Figure 2.

• Several different species of tree were used including
apple, cherry, and almond.

• Several times of year were used for each tree to model
its appearance (varying foliage) in different seasons.

Fig. 2: SpeedTree apple trees: close-up, summer and winter.

The tree models are input to an automatic process that
distributes trees on a topographic terrain captured from the
real-world. Adjustable scene parameters are the type of
plants, the size of the crop, the spacing between plants,
the type of terrain, the presence of accessories faithful to
real-world farm settings such as stones on the ground, and
randomness in the placement. The arrangement of the plants
follows a rectangular alignment similar to Figure 1. Figure
3 shows an example terrain.

The system generates large image datasets of the per-
spective view and the binary bird’s eye view of the scene
automatically. These images provide the input for training
selected PV2BEV methods.

(a) Point cloud of a mountain (b) 3D object based on real
topology

Fig. 3: Real topology extraction for simulation

IV. EXPERIMENTS

We investigated the Monolayout, PYVA, MonoDETR
methods for agricultural scenes. The MonoDETR method
was eliminated due to the disadvantages of the representation
and long training times, as discussed in Section II. Mono-
layout and PYVA were evaluated according to the expected
challenges that are present in agriculture, namely variations
due to season change, variations due to different species of
trees, and variations due to spacing between plants. We report
mean Average Precision (mAP) and mean Intersection over
Union (mIoU) for our experiments.

A. Comparative analysis for Monolayout and PYVA

Firstly, the effect of different sizes of training sets was
investigated, as shown in Table I.

Because PYVA produced the best results with small
datasets and has a good precision/training time ratio, it was
chosen to continue with further experiments.



dataset size Monolayout PYVA
400 images 0.1095 0.6318
1000 images 0.2964 0.6912
3200 images 0.6536 0.6488

TABLE I: mIoU scores of trained networks with different dataset
sizes, for the two algorithms.

B. Influence of the season

For this experiment, the PYVA network was trained with
images of an apple orchard in the summer. Testing was
then done on imagery with a different tree configuration
and for all of the seasons. Figure 4 shows qualitative results
and Table II (Summer set) shows quantitative ones obtained
for the case when the network was trained with summer
apple trees, and tested on summer apple trees with different
tree geometry, scene accessories, skies and terrain. Figure
5 shows results for the case when the training set contains
summer apple trees and the test set contains autumn apple
trees. For Figures 4,5,6, and 7, the color image is the input
image. The ground-truth is at the top-right and the prediction
is at the bottom-right. The white areas represent the trees
and the black ones the other parts of the scene, mainly the
ground. For the real input images, only the prediction is
available at the right.

Fig. 4: Prediction/Test of the PYVA method on an apple orchard in
summer. The network was trained with 1200 images of an apple
orchard in summer.

Test Set Season mIoU mAP
Summer 0.50 0.55
Spring 0.47 0.53
Autumn 0.48 0.59
Winter 0.36 0.42

TABLE II: mIoU scores of a network trained on apple trees in the
Summer and tested on apple trees during different seasons

Based on the qualitative and quantitative results in Table
II, the difference in textures, between a training set and a
testing set does not seem to influence the quality of the
prediction. We can therefore conclude that the difference
in season, and therefore in textures, does not influence the
quality of the prediction. However, the loss in foliage in
winter does degrade the performance probably due to the
change in geometry.

Fig. 5: Prediction/Test of the PYVA method on an apple orchard in
autumn. The network was trained with 1200 images of an apple
orchard in summer.

C. Influence of the type of tree

For this experiment, the PYVA network was trained using
an apple tree dataset but the test set consisted of cherry trees.
Figure 6 shows an example result. The cherry trees have
sufficiently different geometry and appearance from apple
trees that the prediction fails.

Fig. 6: Prediction/Test of the PYVA method on a cherry orchard
in summer. The network was trained with 1200 images of an apple
orchard in summer.

D. Influence of the spacing between trees

The spacing between trees is closely related to the amount
of occlusion which will occur. For this experiment, we
investigated the effect of changing space. The trees in Figure
4 are spaced at 14[m]x16[m] apart, and the trees in Figure
7 are spaced at 12[m]x14[m]. The mIoU and the mAP on a
scene with wider tree spacing are 0.50 and 0.55, respectively,
while 0.46 and 0.50 on the one with narrower tree spacing.
This indicates that the PYVA method is adversely affected by
inter-tree occlusion, and the topic would benefit from further
investigation.

V. EXPERIMENTS ON REAL IMAGES

This last experiment is based on real images. The goal
is to see how well the PYVA method, trained on synthetic
images, was able to predict a bird’s eye view of real images
without domain adaptation.

The PYVA was trained with a dataset consisting of syn-
thetic images of orchards over the four seasons, with a
validation set that contained only synthetic images of apple
trees in winter. This validation set was chosen to correspond



Fig. 7: Prediction/Test of the PYVA method on a summer apple
orchard with 12[m]x14[m] plant spacing. The network was trained
with 1200 images of an apple orchard in summer, with the same
spacing.

to the case of the real images, which are of apple trees in
winter 2022-23. Figures 8, 9, and 10 show qualitative results
(ground-truth is not available). The algorithm is successful
at predicting tree configuration and spacing. Tree shape is
poor in the prediction since the real-world trees are all
approximately the same size, but the predicted size varies.

The results are nevertheless promising in that a network
trained purely with synthetic tree is able to produce a
comprehensible result with real imagery. Adding domain
adaptation is a logical next step, and we are considering how
to create labeled datasets of real imagery.

Fig. 8: Real image of two apple trees with the output of the network.

Fig. 9: Real image of an apple orchard with 7 recognizable trees
and the network output.

VI. CONCLUSION AND FUTURE WORK

This paper has investigated the application of PV2BEV
methods to agricultural environments. From a range of
existing PV2BEV methods [6], three methods [7] [8] [9]
were selected and assessed on orchard scenes. The PYVA al-
gorithm was chosen for training with synthetic tree imagery,

Fig. 10: Real image of an apple orchard containing 4 recognizable
trees with the output of the network.

and testing on synthetic imagery for ground truth, and testing
on real images for qualitative results.

The results indicate that PV2BEV can be applied to trees.
One next step is a fuller investigation of real imagery, while
a key topic for future work is how to match the generated
bird’s eye view to real aerial imagery which opens up several
research possibilities. This kind of matching could allow
finding the position of the trees of an orchard relative to
a robot on the ground, for example. The initial investigation
has set a promising basis for this future work.
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White, J. Pyörälä, X. Yu, Y. Wang, J.-P. Virtanen, O. Pohjavirta,
X. Liang, M. Holopainen, and H. Kaartinen, “Under-canopy uav laser
scanning for accurate forest field measurements,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 164, pp. 41–60, 2020.

[6] Y. Ma, W. Tai, X. Bai, H. Yang, Y. Hou, Y. Wang, Y. Qiao, R. Yang,
D. Manocha, and X. Zhu, “Vision-centric bev perception: A survey,”
arXiv preprint arXiv:2208.02797, 2022.

[7] K. Mani, S. Daga, S. Garg, S. S. Narasimhan, M. Krishna, and
K. M. Jatavallabhula, “Monolayout: Amodal scene layout from a
single image,” in The IEEE Winter Conference on Applications of
Computer Vision, 2020, pp. 1689–1697.

[8] S.-Y. Yang, W.-C. Lee, Y.-C. F. Wang, and Y.-K. Lai, “Projecting
your view attentively: Monocular road scene layout estimation via
cross-view semantic alignment,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2021, pp. 14 777–14 786.

[9] R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao, and
H. Li, “Monodetr: Depth-aware transformer for monocular 3d object
detection,” arXiv preprint arXiv:2203.13310, 2022.

[10] [Online]. Available: https://store.speedtree.com/speedtree-store/
[11] [Online]. Available: https://www.swisstopo.admin.ch/fr/geodata/

height/alti3d.html

http://floatingrobotics.com
http://ageagle.com
http://rowesys.ethz.ch
http://ecorobotix.com
https://store.speedtree.com/speedtree-store/
https://www.swisstopo.admin.ch/fr/geodata/height/alti3d.html
https://www.swisstopo.admin.ch/fr/geodata/height/alti3d.html

	Introduction
	Related Works
	Simulation-based Data Generation
	Experiments
	Comparative analysis for Monolayout and PYVA
	Influence of the season
	Influence of the type of tree
	Influence of the spacing between trees

	Experiments on real images
	Conclusion and Future work
	References

