Potato: A Data-Oriented Programming 3D Simulator
for Large-Scale Heterogeneous Swarm Robotics

Jinjie Li', Liang Han?*, Haoyang Yu?, Zhaotian Wang?, Pengzhi Yang®, Ziwei Yan?, Zhang Ren'

Abstract— Large-scale simulation with realistic nonlinear dy-
namic models is crucial for algorithms development for swarm
robotics. However, existing platforms are mainly developed
based on Object-Oriented Programming (OOP) and either
use simple kinematic models to pursue a large number of
simulating nodes or implement realistic dynamic models with
limited simulating nodes. In this paper, we develop a simulator
based on Data-Oriented Programming (DOP) that utilizes
GPU parallel computing to achieve large-scale swarm robotic
simulations. Specifically, we use a multi-process approach to
simulate heterogeneous agents and leverage PyTorch with GPU
to simulate homogeneous agents with a large number. We
test our approach using a nonlinear quadrotor model and
demonstrate that this DOP approach can maintain almost the
same computational speed when quadrotors are less than 5,000.
We also provide two examples to present the functionality of
the platform.

I. INTRODUCTION

Swarm robot systems can accomplish tasks that individ-
ual robots cannot complete alone through cooperation and
coordination, which has recently received extensive atten-
tion from academia and industry. Developing perception,
planning, and control algorithms for these swarm robots
requires experiments on hardware systems to verify their
effectiveness. However, field experiments for swarm robots
are demanding to conduct due to challenges such as large
experimental sites, high maintenance difficulty, and high
failure rate. Therefore, utilizing a simulator with realistic
models is necessary to verify the swarm algorithms.

The simulators suitable for swarm robots have require-
ments in two dimensions: the number of simulation nodes
and the fidelity of the simulation models. However, existing
robotic simulators usually focus on one dimension. Some
robotic simulators attempt to achieve large-scale simulations
at the expense of fidelity, such as the simple kinetic model
in BeeGround [1] and the modified unicycle model in
SCRIMMAGE [2]. Other popular robotic simulators provide
realistic models while supporting the simulation of only
about 50 robots on a desktop computer, such as AirSim [3]
and Gazebo-based RotorS [4]. The above simulators lever-
age mainly central processing units (CPUs) for numerical

1J. Li and Z. Ren are with the School of Automation Science
and Electrical Engineering, Beihang University, Beijing, 100191, China
{lijinjie, renzhang}@buaa.edu.cn

2L. Han, H. Yu, Z Wang, and Z. Yan are with the Sino-
French Engineer School, Beihang University, Beijing, 100191, China
{liang.-han, haoyang.yu, wangzhaotian, yanziwei
}@buaa.edu.cn

3P. Yang is with the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, Delft, 2628 CD,
Netherlands P.Yang—-4@student.tudelft.nl

Path
Agent 1
gen Follower
Path
Agent 2
gen 4$[Follower

Path . .
Agent N 4[Follower H Autopilot H Dynamics] x

(a) Object-Oriented Programming (OOP)

H Autopilot]—»[Dynamics]
]—»[Autopilot H Dynamics J

e.g. Uy
Agent 1 HEN
Path Autopilot Dynamics | | |a;
Follower
Agent 2
O) O u
...... PyTorch PyTorch PyTorch |
Agent N nn.Module nn.Module nn.Module
ana
J
Y
nn.Module TorcW’ C++
(b) Data-Oriented Programming (DOP)
Fig. 1. The core idea of our simulator. Traditional robotic simulators are

developed using OOP, where multiple agents are multiple instances as shown
in (a). The agents are then computed through for-loops, multi-threads, or
multi-processes, etc. However, since a desktop CPU typically has 10-20
threads, each CPU thread computes multiple agents serially in a loop for
large-scale simulation. As a result, the computational speed increases almost
linearly with the number of agents. In contrast, the proposed simulator is
developed using DOP, grouping the computations of homogeneous agents
together and parallelizing them in batches using tensors as shown in (b),
which can be computed directly on GPUs. In addition, each computation
module can be written as an nn.Module and compiled into C++ using
PyTorch’s TorchScript for further acceleration. This approach maintains
almost the same computational speed for the number of agents below a
certain level (below 5,000 in our test).

computation, which limits their capability for large-scale
simulation.

Alternatively, the advancement of graphics processing
units (GPUs) has opened up the potential for conduct-
ing large-scale and high-quality simulations in parallel.
NVIDIA’s Isaac Gym [5] is an example simulation tool
that utilizes GPUs to parallelly simulate the physical world,
indicating that GPUs can handle nonlinear models with
high fidelity for large-scale simulations. However, Isaac
Gym primarily aims at the algorithm development of deep
reinforcement learning, which provides an interface differing
from the requirement of swarm robotics. In addition, Isaac
Gym is developed using CUDA and C++, which is difficult
to master and modify internally, making it challenging for
scientific research on swarm algorithms. These limitations
are considered when developing the proposed simulator.

In this paper, we develop Potato, a GPU-based large-scale

Algorithm Side

:] Pandas DataFrame

> Comm. By Queue

N Evaluation

Config.yaml Initialization ‘

~——* Comm. By Socket — Comm. By Variable

Decision (Al)

————————ee—eth—_——_—_—_—_,—_,—_,Y_,—Y_—,Y—_—,—_ Allstates | _ _ _ _ _ _ _ _ _ _ __ o ____ i

Central Side

@ Algorithm Comm. !
Data-Oriented Programming Subprocess ;
- Path following T (Optional) !
- Low-level control Continue/Stop
- Dynamics @ Collision/Detection Simulation !
Subprocess i
- Commands handling N

Computational Subprocess:

@ Fixed-wing

[|
* Main Entity Physical Computational Subprocess: Construct New
Process Interactions Disturbances Quadrotors All States |
E.g. update All states - L Ego states 1
leader’s position Computational Subprocess: ‘
Cars :
@ Viewer Comm. Subprocess Al ;n?tlon \
Simulation Loop slates |

Viewer Side

Human Interface

Fig. 2. The system structure of the proposed simulator. The proposed simulator consists of a Simulation Loop where the states of all agents are transmitted
to four directions. Direction @ sends the states to the algorithm side via an algorithm communication subprocess, which uses this information for evaluation
and decision making. The generated commands are then sent to computational subprocesses for handling. Direction @ calculates collision and detection
results, which are also sent to computational subprocesses for handling. Direction ® computes low-level algorithms and dynamics for heterogeneous agents,
and sends the updated states back to the main process to refresh the all-states data. Finally, Direction @ uses a viewer communication subprocess to visualize
all agents’ motions, and users can manipulate the mouse to influence the agents’ behaviors.

heterogeneous robot simulator. Unlike traditional OOP-based
simulators, Potato is designed using DOP, naturally support-
ing the numerical computation of large-scale nodes on GPUs.
Compared with Isaac Gym, our platform is developed using
Python and PyTorch and has cross-platform compatibility
as well as lower development difficulty. Furthermore, the
simulation can be accelerated using TorchScript, a tool
in PyTorch used for deep learning acceleration. Finally,
we conduct experiments to verify the effectiveness of the
proposed architecture, and we present two demos based on
this platform. We hope the idea proposed in this paper
can promote the development of the next-generation swarm
robotic simulator.

II. METHODOLOGY
A. System Architecture

This section introduces the system architecture of the
developed large-scale heterogeneous simulation platform, as
shown in Fig. 2. From top to bottom, the entire system is
divided into three sides: an algorithm side, a central side, and
a viewer side. The algorithm side mainly generates decision-
making instructions according to the states of the agents; the

central side controls the simulation process and computes
the ordinary differential equations (ODEs) of dynamics; the
viewer side displays the movement of agents and servers as
a human-computer interface. Socket communication is used
between each end, making these ends capable of running on
different computers. Furthermore, the simulator written in
Python can run on different operating systems.

The whole simulation process is depicted in Fig. 2. At the
beginning, the algorithm side sets the simulation parameters
by reading a configuration file. Then, during each simulation
loop, all agents’ states (stored in a pandas.DataFrame)
are circulated in different system modules, and each module
changes all or part of the agents’ states.

Unlike other simulation platforms, we take the colli-
sion/detection module and algorithm side out of the main
simulation loop based on the following considerations: First,
keeping as few modules as possible in the main loop accel-
erates the computational speed. Second, taking the decision
module (algorithm side) outside of the loop approximates the
real world. In the real world, humans make decisions with
the changing physical world, so the physical world can run
for a while before receiving decision-making instructions.

2O

QO
1 X (E) o 1

Fig. 3. Diagram of the quadrotor model with the ENU (X East, Y North,
Z Up) inertial frame and the FLU (X Forward, Y Left, Z Up) body frame.

Third, taking the collision/detection module outside can still
guarantee the correct result as long as its computational speed
is similar to the main loop. Then the collision information is
handled in the main loop using an event-triggered mech-
anism, and colliding agents will be marked as dead and
excluded from the entire system. We also retain the option
of putting these modules into the main loop.

B. Quadrotor Dynamics & Control

Three types of mobile robots have been implemented in
this simulator, including fixed-wing drones [6], quadrotors
[7], and cars [8]. The quadrotors are utilized to test the
performance and hence are briefly introduced here.

We assume that the origin of the body frame B is at the
center of mass, and four rotors are all placed in the 55 frame’s
XY-plane. Established from 6-DoF rigid-body dynamics, the
quadrotor model is written as follows

'p="o, (1)
"o = (5R(q)-Pfu) /m+g, 2)
qu=1/2-quo[B(L], 3)
Bo=1" (-Pwx (I-Pw)+"7,),)

where o indicates quaternion multiplication, m is mass, /g =
[0,0,—g]" is gravity vector, I = diag(lys,lyy, L») is
inertia matrix assuming that the quadrotor exhibits symmetry
across all three axes, Zf, and BT, are force and torque
caused by the rotors, and Bw = [w,,w,,w.]” is angular
rate vector expressed in the body frame.

The thrust generated by rotors is assumed to be vertical
to the B frame’s XY-plane, and we therefore obtain & f,, =
[0,0, fC]T and Br, = [, 7y, TZ]T, where f, is the collective
force of four rotors. We use a quadratic fit to model the thrust
and torque for each propeller:

fi=ke - Q 1=k, Q%)
where k; and k, are the thrust coefficient and torque coef-
ficient, respectively, as well as) represents motor speed in
RPM. Then the [f., 7, 7y, TZ]T and the thrust of each rotor
fi is connected by

[f&Tw’Ty?TZ]T:G'[f17f2a.f3af4]Ta (6)

TABLE I
RUNNING TIME MEAN AND STANDARD DEVIATION (SD) PER ROUND

Language PyTorch FALLBACK | Running Time [ms]
Version Version Error (mean + SD)
origin Py3.8 1.10.0+cul02 N 0.8452 + 0.0196
conda Py3.8 1.10.0+cul02 N 0.8550 4 0.0127
conda Py3.9 1.13.0+cull6 Y 1.6974 +0.0141
conda Py3.9 2.0.0+cul17 N 1.4171 + 0.0187
conda Py3.10 | 1.12.0+cull6 Y 1.1738 +0.0248
conda Py3.9 1.12.0+cull6 Y 1.1857 + 0.0071
conda Py3.8 1.12.0+cul 16 N 0.8678 £ 0.0081
C++ Release 1.12.0+cul 16 Y (much) 2.8181 £ 0.0460
C++ Debug 1.12.0+cul 16 Y (much) 2.8017 £ 0.0318

in which the control allocation matrix G is

1 1 1 1
G- Lsinae —Lsina —Lsina Lsina 7
—Lcosa —Lcosa Lcosa Lcosa |’
kq/kt _kq/kt kq/kt _kq/kt

where L and « are geometric parameters shown in Fig. 3.
Finally, the model is discretized by the 4-order Runge-Kutta
method for numerical simulation.

We also implement a PID body rate controller as the inner
control loop. This dynamics & control model is utilized to
test the computational speed in the next section, and we
recommend [7] to interested readers for more details.

III. PERFORMANCE

In this section, we test the computational performance
of the DOP structure on simulating swarm quadrotors. The
performance is tested using a desktop computer with an Intel
i7-10700 CPU and an NVIDIA GTX 1660 SUPER GPU. The
test program runs on the Ubuntu 20.04 operating system.

The proposed method relies on TorchScript provided by
PyTorch to accelerate the computational speed, and the whole
simulation loop can be implemented by Python or C++, so
we test the running time for each round under different
languages and PyTorch versions. In each test, we fix the
number of quadrotors to 1,000 and first run 500 rounds
for stable running, then run 2,000 rounds and calculate the
average consuming time. Finally, we execute three times for
each test and list the result in Table I.

From the table, the C++ version is not faster than the
Python version, and we infer the possible reason is many
FALLBACK warnings when loading the TorchScript model
using libtorch, the C++ API of PyTorch.

Then we choose the conda Python 3.8 environment with
PyTorch 1.12.0+cull6 to test the change of running time
concerning the number of quadrotors, as shown in Fig. 4.
The figure shows that the computational time stays almost
the same under 5,000 agents and remains less than 2ms for
even 10,000 agents, demonstrating the advantage of the DOP
method in simulating large-scale agents.

IV. EXAMPLES AND EXTENSIONS

This section presents two demos of our simulator.
The first demo (Fig. 5a) verifies that our simulator can
support over 1000 homogeneous agents simulating on one

16

14

12 o

Running Time Per Round (ms)

bR T ML | T MR | T MR |
102 103 104 10°
Number of Agents

Fig. 4. Running time as a function of number of agents based on the log
coordinates. The time remains stable under 5,000 quadrotors.

desktop computer with a GPU. Furthermore, we demonstrate
that the simulator can support over 1000 heterogeneous
agents, even though the simulating rate is 0.8x.

The second demo shows one research paper using the
proposed simulator to verify the algorithms for a large-scale
swarm system. Generally, swarm algorithms are demanding
to test on large-scale real robots due to limitations in the
experimental field and equipment. Thus, this paper builds
a mixed-reality platform to verify the effectiveness of the
algorithm by applying it equally to limited real robots and
hundreds of virtual robots. These virtual robots are supported
by our platform, and the positions of both real robots and
virtual robots are presented together in our platform, as
shown in Fig. 5b.

We plan to apply this platform to more research and
present more examples in the future.

V. CONCLUSION

In this paper, we developed Potato, a large-scale swarm
robotic simulator based on the DOP approach. This simulator
used a multi-process approach to simulate different types of
agents, and also utilized DOP to accelerate the computation
of large-scale homogeneous agents in each process. We
leveraged the PyTorch library and TorchScript tool from
the deep learning community to invoke GPU and achieved
parallel computation for dynamics, making the simulator
cross-platform and easy to develop. Two examples were
presented to illustrate the functionality of the platform.

In the future, we plan to open-source the quadrotor part of
the simulator, package it as a ROS node, and display it using
RVIZ. We hope the proposed simulating architecture can
provide valuable references for the design of next-generation
large-scale swarm robotic simulators.

REFERENCES

[1] S. Lim, S. Wang, B. Lennox, and F. Arvin, “BeeGround -
An Open-Source Simulation Platform for Large-Scale Swarm
Robotics Applications,” in Proceedings of International Conference on
Automation, Robotics and Applications, Feb. 2021, pp. 75-79.

(a) Demo 1: 1,000 airplanes are flying along circle trajectories, and the
trajectories are represented as colorful circles.

(b) Demo 2 [9]: four real quadrotors and hundreds of virtual quadrotors
are flying to verify the formation algorithm in a mixed-reality experimental
platform, of which the virtual part is provided by the proposed simulator.

Fig. 5. Two demos to present the functions of our simulator.

[2] K. DeMarco, E. Squires, M. Day, and C. Pippin, “Simulating Collab-
orative Robots in a Massive Multi-agent Game Environment (SCRIM-
MAGE),” in Proceedings of Distributed Autonomous Robotic Systems:
The 14th International Symposium, ser. Springer Proceedings in Ad-
vanced Robotics, Jan. 2019, pp. 283-297.

[3] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Vi-
sual and Physical Simulation for Autonomous Vehicles,” in Proceedings
of Field and Service Robotics, ser. Springer Proceedings in Advanced
Robotics, Nov. 2017, pp. 621-635.

[4] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS—A modular
gazebo MAV simulator framework,” in Robot operating system (ROS).
Cham, Switzerland: Springer Cham, Feb. 2016, pp. 595-625.

[5S] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey,
M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and
G. State, “Isaac Gym: High Performance GPU Based Physics
Simulation For Robot Learning,” in Proceedings of Conference on
Neural Information Processing Systems (NeurIPS), Nov. 2021, pp.
1-21.

[6] R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory
and Practice. Princeton, NJ, USA: Princeton University Press, Feb.
2012.

[7] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza, “A
Comparative Study of Nonlinear MPC and Differential-Flatness-Based
Control for Quadrotor Agile Flight,” IEEE Transactions on Robotics,
vol. 38, no. 6, pp. 3357-3373, Dec. 2022.

[8] J.Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-Based
Model Predictive Control for Autonomous Racing,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3363-3370, Oct. 2019.

[9] Z. Yan, L. Han, X. Li, J. Li, and Z. Ren, “Event-Triggered Optimal
Formation Tracking Control Using Reinforcement Learning for Large-
Scale UAV Systems,” in Proceedings of International Conference on
Robotics and Automation, May 2023.

	Introduction
	Methodology
	System Architecture
	Quadrotor Dynamics & Control

	Performance
	Examples and Extensions
	Conclusion
	References

