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Abstract— In robotics, it is important to model sensor noise
because it can affect the accuracy and reliability of the robot’s
perception of its environment. Modeling sensor noise also allows
for more accurate simulations of robotic systems, which can
help improve their performance in real-world scenarios. Given
the rise in the use of simulation tools for rapid prototyping and
iteration of aerial robotic systems, we propose the introduction
of a noise model for the 3D lidar sensor that is supported in
AirSim, in order to help the community build more accurate,
reliable, and cost-effective solutions.

I. INTRODUCTION

Autonomous robots need to sense the world around them.
Sensor noise can cause measurement errors, which could lead
to incorrect decisions and actions by the robotic systems [1].
Modeling sensor noise is important in robotics because it
helps improve robot sensors’ accuracy and ability to perceive
the environment. Sensor noise can be caused by various
factors, such as environmental conditions, manufacturing
imperfections, hardware limitations, and signal processing
errors. Some sensors that rely on measuring distances, such
as sonar, infrared, and lidar sensors, are known to be partic-
ularly susceptible to noise [2].

Modern robotic systems are complex and must be tested
in simulations with detailed sensor noise models to verify
robotic behaviour effectively. Ignoring sensor noise in simu-
lations can lead to unrealistic performance expectations and
poor design choices. Using realistic noise models enables
the development of more accurate simulations, which can
improve the performance of robotic systems in real-world
scenarios. The pitfalls of naive robot simulations have been
recognized in areas such as evolutionary robotics [3], sug-
gesting that carefully validated simulations can provide a
useful tool for testing hypotheses about the behaviour of
robots in complex environments. Implementing sensor noise
in robotics simulations poses several challenges; some of
the most important aspects are accurately simulating the
physical world, which involves a composition of various
models. To address these challenges, researchers continue to
develop new methods and models to improve the accuracy
and reliability of robotics simulations [4].

Simulation is a critical tool for aerial robotics research.
It allows researchers to test ideas safely, predict system
behaviour, revisit concepts, and tune algorithms to sufficient
levels, given that good models have been derived. Moreover,
the complexity of aerial robotic systems compared to ground
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Fig. 1. Simulated lidar point clouds with our proposed noise model

robots and the safety implications of current regulations
demand simulation tools in order to test developments as
early as possible. There are several options available for
robotics research [5], such as Gazebo within the Robot
Operating System (ROS) [6], Carla which is more focused on
autonomous driving [7], or AirSim developed by Microsoft
[8]. Nevertheless, using simulation in aerial robotics research
has important limitations [9] since real-world dynamics are
very difficult to model accurately.

In order to improve the performance of the algorithms
when they are transferred from simulation to real robotic
systems, we have identified a potential improvement for
the sensors supported in AirSim. Currently, the only ones
providing a noise model are the barometer and magne-
tometer. Lidar technology is increasingly used in aerial
robotics research, given the reduction in cost, size and weight
of available commercial models, which has allowed their
integration into a wider range of aerial platforms. This has
brought more interest in research based on this technology,
which implies a higher importance in how these systems
are used in simulation environments. The 3D lidar sensor
supported in AirSim allows the configuration of several pa-
rameters, but none related to a noise model for the provided
measurements. We propose introducing a noise model for
this sensor corresponding to the specifications of current
commercial products, as depicted in Fig. 1, showing results
of experiments where such a model brings the simulator
closer to a real-world scenario.

The rest of the manuscript is structured as follows. Section
II details our AirSim framework and the scenario we have
worked with. Section III explains the noise model developed



in this context, while Section IV shows some results of
its impact in a practical application. Finally, Section V
summarises our approach’s outcomes and future potential.

II. SIMULATION ENVIRONMENT

AirSim is an open-source, cross-platform simulator de-
signed for autonomous systems research. It is built on
Unreal Engine [10], a 3D computer graphics game engine
developed by Epic Games. The game engine does all the
graphical rendering, collision, and vehicle movement simu-
lation. AirSim supports software-in-the-loop simulation with
popular flight controllers such as PX4 or ArduPilot, which
is very convenient for testing autonomous missions before
the deployment on the actual hardware platform. Moreover,
it is easily integrated with ROS through a wrapper, allowing
external nodes to work with the simulated data.

In order to simplify the configuration, installation of
dependencies and deployment of this environment on any
computer, our framework is based on Docker images. This
allows for automating the deployment of applications within
software containers, providing an additional layer of abstrac-
tion and automation of application virtualization in multiple
operating systems. We have also developed scripts to deploy
and automatically configure different parameters concerning
the simulation and the involved onboard sensors.

Fig. 2. Refinery environment used in the experiments

Furthermore, to demonstrate the validity of our contribu-
tion, we have created a realistic scenario for inspection and
maintenance purposes, in this case a refinery environment.
Oil and gas production plants frequently experience compo-
nent deterioration due to environmental exposure, or materi-
als used in production. If pipe corrosion is left unchecked,
it can result in accidents, such as devastating explosions and
the release of hazardous materials. Consequently, this can
affect the safety, environment, and operability of the plant.
Aerial robots are a very useful tool for inspection purposes in
these plants. To ensure their safe operation, it is essential to
have a robust localization system independent of the Global
Navigation Satellite System (GNSS) combined with onboard
inertial sensors, which can be unreliable in such a cluttered
environment full of metallic structures. The proposed virtual
world allows evaluation of the performance of algorithms in
a complex scenario, where the robot localization needs to

be as good as possible. Fig 2 shows an aerial view of the
recreated refinery scenario used in this work.

III. LIDAR NOISE MODEL

The implemented noise model is closely related to how
a 3D lidar sensor internally works. Most commercial lidars
are formed by several vertically arranged laser beams rotating
at high speed. The horizontal and vertical angle resolution
can be known with high precision, so the directions of the
laser beams can be measured with low error. Nevertheless,
the range measurements depend on the beams’ time of flight
(ToF), which is more susceptible to errors due to environ-
mental conditions or the internal clock resolution. Moreover,
these errors increase in more distant points, causing a worse
performance as the beams hit more distant objects. Following
this idea, instead of adding a random noise for each point,
our model only affects the range and not the direction of the
beam it belongs to. The range noise is modelled as a zero-
mean Gaussian distribution with a standard deviation which
increases linearly with the range [11].

Since AirSim is open-source, the code for simulating a
lidar within the Unreal Engine is available, so this noise
model has been added to each point in the ray-tracing
process. The main parameters which can be modified exter-
nally are the standard deviation at zero distance and at the
maximum range. A linear noise model has been implemented
by adapting the AirSim plugin, generating the desired point
clouds when the lidar sensors are parameterized, providing
such standard deviation values. In contrast to other open-
source simulators [7] where the deviation is constant with
distance, the proposed noise model increases linearly.

Two commercial lidar models have been studied, the
Ouster OS0 and OS1, with 32 horizontal scans, and each
of the scans consists of 512 points. The main differences
between these two sensors are the vertical Field Of View
(FOV) and the maximum detection range. According to
the datasheets [12][13], the selected OS0 sensor has been
parameterized in our simulation with a 90º vertical FOV
(± 45º) and a maximum range of 45m. On the other hand,
the OS1 sensor was characterized by a 45º vertical FOV
(± 22.5º) and a maximum range of 100m. The accuracy of
both sensor models is 3cm for lambertian targets, while their
precision is defined by fixed values for the mean and standard
deviation for different range intervals, according to Table I.

TABLE I
PRECISION FOR OUSTER SENSORS (10% LAMBERTIAN REFLECTIVITY)

OS0 OS1
Range [m] StdDev. [cm] Range [m] StdDev. [cm]

0.3 - 1 2 0.3 - 1 0.7
1 - 10 1 1 - 20 1

10 - 15 1.5 20 - 50 2
15 - 45 5 50 - 100 5

Based on this data, the values for the standard deviation
at minimum and maximum ranges were chosen as follows:
1-10cm for OS0 and 1-15cm for OS1. While the proposed



Fig. 3. Trajectories comparison between ideal and noisy OS0 ouster sensor

noise model appears to be basic, it reflects more accurately
the noise data provided by the manufacturer, and better
corresponds with our experience using such sensors in real
experiments.

IV. EXPERIMENTAL RESULTS

An open-source localization algorithm was chosen to
evaluate the influence of the introduced lidar noise. LeGO-
LOAM [14] is a lightweight lidar odometry and mapping
method that provides real-time six-degree-of-freedom pose
estimations. It is specifically optimized for a horizontally
placed 3D lidar sensor mounted on a ground vehicle, assum-
ing there is always a ground plane in the scan. While these
evaluations are based on an aerial vehicle, this assumption
holds for our scenario with flat ground, even though LeGO-
LOAM could properly handle variable terrain by definition.
Only the lidar point clouds are included in the odometry
computation, i.e. no inertial data are used. In this way, the
odometry quality will strongly depend on the geometry of
the point clouds, and the effect of the introduced noise can
be clearly assessed.

A benchmark trajectory was defined to evaluate the lo-
calization of the aerial robot. A closed trajectory around
the refinery environment was designed to emulate a real
mission for the general inspection of the plant during a
single flight, as depicted in Fig. 4. The odometry comparison
(with and without sensor noise) is carried out by calculating
the absolute pose error (APE), which evaluates the global
consistency of the estimated trajectory by comparing the
absolute distances between the estimations and the ground
truth. The results have been obtained using evo [15].

First, the effect of adding noise to the Ouster OS0 sensor
model is shown. As it can be seen in Fig. 5, the effect of
the noise is considerable (note the difference in scale) which
significantly increases the error in the position estimation.

While the localization using the ideal lidar resembles
the real trajectory with high accuracy, the algorithm faces
great difficulties if the proposed noise is introduced. The

Fig. 4. Reconstructed 3D coloured map of the environment; the estimated
trajectory is shown in black

Fig. 5. APE obtained with ideal (left) and noisy (right) OS0 lidar

localization accumulates some drift as the aerial robot moves,
especially in yaw and altitude changes. By the last quarter of
the benchmark trajectory, there was a turn that caused high
drift, completely deviating the estimation. From this moment,
the APE error increases, as can be seen in Fig. 5.

Using the OS1 sensor, as shown in Fig. 6, errors are
relatively small with and without sensor noise over the entire
trajectory. This is probably due to the fact that the OS1
sensor has twice the range of the OS0, and the modeled
noise is spread over the entire range. Having a higher range



is a differentiating factor, which improves the accuracy of
odometry thanks to a more global perception of the scene.
The OS1 lidar with the noise model causes much lower drifts
compared with the previous noisy OS0.

In this case, both ideal and noisy models of OS1 resemble
the benchmark trajectory with decent accuracy. Nevertheless,
the effect of noise is not unnoticeable. APE errors for the
odometry corresponding to the noisy OS1 are shakier and
have higher values than those produced with the ideal sensor.

Fig. 6. APE obtained with ideal (left) and noisy (right) OS1 lidar

Table II compiles the errors obtained for all the simulated
experiments. The ideal sensors have similar low values,
causing the lidar-based odometry to perform accurately de-
spite other conditions. However, when the noise model is
introduced, both sensors perform worse. This proves the
importance of modeling the noise to help reduce the gap
between simulation and reality, since the specifications of
the real sensor must be handled in the developed algorithms.

TABLE II
APE IN SQUARED TRAJECTORY FOR ALL CONFIGURATIONS

OS0 Ideal OS0 Noisy OS1 Ideal OS1 Noisy
RMSE 0.1213 37.3830 0.1137 0.1576
Mean 0.1118 28.8392 0.1034 0.1398

Median 0.1111 21.7313 0.0977 0.1289
Std 0.0471 23.7863 0.0472 0.0727
Min 0.0028 2.1846 0.0053 0.0042
Max 0.3728 100.1327 0.4382 1.0041

V. CONCLUSIONS

Modeling sensor noise in simulation environments helps
reduce the cost and time required for the testing and develop-
ment of aerial robotic systems. By introducing a lidar noise
model using real specifications of currently available com-
mercial products, the algorithms developed considering these
measurements will be more robust and reliable, reducing the
risk of failure in real-world scenarios. New improved com-
mercial models can be easily integrated in order to update our
contribution. Future work will consider exploring other noise
models using, for example, a continuous piecewise linear
function to adjust better to the datasheet values provided for
the different range intervals. Nevertheless, assessing how the
simulated noise adjusts to the real sensor behaviour remains
an open question. Moreover, a loss function could also be

implemented to mimic how some points are not correctly
processed due to reflections, environmental conditions and
sensor limitations. Furthermore, an identifier of the hit object
could be retrieved for each point thanks to AirSim, so an
even more realistic behaviour can be modelled by adapting
the parameters to the nature of the objects materials, as well
as simulating the vibrations of the aircraft or the effect of
quick rotations on the sensor’s echo.
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