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Abstract—There are plenty of dynamic parameters to be con-
sidered when designing unmanned aerial vehicle (UAV) simula-
tors. In many scenarios, the simulator designer aims to accurately
capture UAV motion dynamics and interaction with environment
for direct simulation to reality transfer. In practice, modeling
and estimation of some of those UAV dynamic parameters can
be expensive and unpractical. In this paper, we provide an
assessment for the use of relative sensitivity function for time-
delay dynamic models. The relative sensitivity function allows
for the analysis of the overall system performance in response
to a change of a dynamic parameter. We provide sensitivity
numerical results based on experimental identification of a UAV
dynamics. Moreover, we investigate the system sensitivity when
different sensor modalities are used. We draw conclusions on
the relative importance of different parameters on the UAV
closed-loop control performance based on the sensitivity results.
Furthermore, we suggest possible future research directions
based on the presented analysis and results.

I. INTRODUCTION

The use of data-based approaches for control has been
attracting increased attention recently from the robotics com-
munity. Data-based approaches promise to offer advantages
over the classical model-based control approaches in some
aspects; mainly in the handling of complex or impossible to
model control problems. For example, reinforcement learn-
ing (RL) is one of the most prominent of these data-based
approaches and its usage witnessed a surge in the robotics
community following the notable success in other domains like
computer games [1], in the hope that the same benefits would
be claimed with real robots. Unfortunately, the application of
data-based approaches to unmanned aerial vehicles (UAVs)
was not as successful, mainly due to the discrepancy between
the simulation models used for RL training, and the real robots
[2]. Simulator design is quite challenging since many factors
contribute to its accuracy, and having a perfect simulator is
undoubtedly impossible. In this paper, we present our results
investigating the use of sensitivity functions to drive the
design of simulators used for data generation and training of
data-based controllers. Sensitivity functions provide a relative
metric for the importance of dynamic parameters and allow the
designer to steer the resources in the right direction. We used
the analytical time-delay cost functionals [3] to evaluate the
sensitivity of the cost functional to UAV parameters variations.
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II. CONSTRUCTING COST FUNCTIONALS

Consider the linearized UAV attitude and altitude parame-
ters given by the following transfer function [4]:

G(s) =
Kpe

−τs

s(Tps+ 1)(Tqs+ 1)
(1)

which accounts for aerodynamic drag [5] (Kp and Tq), ac-
tuator dynamics [6] (Tp), and time delay [7] (τ ) due to the
cyber-physical nature of the system. We assume the use of a
PD controller for each control loop since position and velocity
measurements are available through sensors. With the use of
a PD controller the error dynamics are written as:

E(s) =
s(Tps+ 1)(Tqs+ 1)

s(Tps+ 1)(Tqs+ 1) + (KpKc +KpKds)e−τs
R(s)

(2)
with Kc and Kd being controller gains.

A controller design is often performed through minimization
of the integral of the square error (ISE) performance index.
It was shown in [8] that the ISE performance index of linear
systems can be found using Parseval’s theorem as follows:

Q(Ci, Gi) =

∫ ∞

0

e2(t)dt =
1

2πi

∫ +i∞

−i∞
E(s)E(−s)ds (3)

where Ci and Gi are the controller and dynamics of the
system with index i, respectively. Note that for the PD case it
the controller parameters are [Kc Kd]

T , which are optimized
to minimize J . One cannot directly evaluate the integrand
E(s)E(−s) using Parseval’s theorem in the delay case due to
the infinite number of poles in the left and right half-planes.
Yet, it is possible to analytically evaluate a cost functional
associated with linear systems with a single time delay through
the method suggested in [3]. In either of delay and delay-free
cases, for the integral in Eq. (3) to exist, the steady-state error
of the system must go to zero. The UAV dynamics could result
in steady-state error for constant external disturbances are
when trying to follow a ramp input [4]. Yet it is still possible
to remove the contribution of the steady-state component and
evaluate the error due to transients:

E′(s) = E(s)− 1

s
lim
s−→0

sE(s) (4)

and then the cost functional optimization of Eq. (3) becomes
a biobjective optimization:

Q = α1Q
′ + α2 lim

s−→0
sE(s) (5)

where α1 and α2 are weighing factors, and Q′ is the cost
functional in Eq. (3) evaluated with error function E′(s) in
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Fig. 1: QDrone research UAV from Quanser. The dimensions
of the QDrone are 40 × 40 × 15 cm, the mass is 1.21 kg,
and a motion capture system connected over WiFi is used for
position measurements.

Eq. (4). From experience, we found that the resultant controller
gains are high, which would result in small steady-state errors
which we can neglect for the practical interest [4]. Hence, we
generally set α2 = 0 and perform the optimization on Q′.

III. DERIVING SENSITIVITY FUNCTIONS

There are multiple sensitivity functions that can be used
to evaluate closed loop robustness to dynamics variations.
For example, the relative sensitivity function is suitable for
large variations [9] and the logarithmic sensitivity can be used
locally to investigate variations in the vicinity of the nominal
dynamics. In this work we use the relative sensitivity function
since we are interested in the relative importance of modeling
of parameters for possible large parametric variations. The
relative sensitivity function is given by [9]:

Jij =
Q(Ci, Gj)−Q(Cj , Gj)

Q(Cj , Gj)
× 100% (6)

where Jij represents the degradation in performance due to
applying controller Ci, which is the optimal controller for
the process Gi and a sub-optimal controller for the process
Gj . Note that Jij ≥ 0, Jii ≡ 0 and Jij ̸= Jji. The relative
sensitivity function depends on the nominal model parameters,
controller tuning, varied parameter, and amount of parametric
variation.

IV. EXAMPLE ANALYSIS

Consider the altitude dynamics in Eq. (1), with the following
dynamic parameters:

Kp = 5.004

Tp = 0.0321

Td = 1.6886

τ = 0.0237

(7)

these parameters were obtained experimentally using the
DNN-MRFT identification algorithm from [10], for the
QDrone platform from Quanser (QDrone is shown in Fig.

Fig. 2: Relative sensitivity to variations in aerodynamic drag
and time delay with respect to three different nominal models
of QDrone. The three different nominal models have three
different nominal time delays, corresponding to the use of
sensors with different latency dynamics.

1). Now we may consider the relative sensitivity to variations
in the linear aerodynamic drag defined in [11], and the time
delay in the system. Variations in the aerodynamic drag are
inversely proportional to the system gain Kp and the time
constant Td. Considering a numerical example for the increase
of drag dynamics by 50%, the dynamics in Eq. (6) would be
then given by (note that the nominal dynamics in Eq. (7) are
indexed with i = 1 and the varied dynamics are indexed with
j = 2):

C1(s) = 59.0265 + 8.304s

C2(s) = 59.6586 + 8.325s

G1(s) =
5.004e−0.0237s

s(0.0321s+ 1)(1.6886s+ 1)

G2(s) =
4.17e−0.0237s

s(0.0321s+ 1)(1.4072 + 1)

(8)

and the corresponding ISE evaluations would be given by:

Q(C1, G2) = 0.11578

Q(C2, G2) = 0.11576

which results in J12 = 0.02%, i.e. no notable change in
performance would be observed. These results, though simple
to obtain, provide important insight into the performance of
the nominal closed loop system to parametric variations that
are expected to happen during the operation envelop.

Suppose that a possible 20% increase in aerodynamic drag
or 20% increase of time delay is specified within the operation
envelope of QDrone. Fig. 2 shows the relative sensitivity re-
sults for three different nominal cases. Note that we varied the
time delay of the nominal model while keeping other model
parameters as specified in Eq. (7). Changing the nominal
time delay corresponds to changing the sensor and processing
algorithms used for positioning, which incurs different overall



Fig. 3: Relative sensitivity to variations of delay for QDrone
nominal dynamics with τ0 = 0.007 s. Decrease of delay
in the loop merely changed the system performance. The
system performance deteriorates rapidly beyond 30% increase
of delay, eventually leading to instability.

latency. In particular, we used 0.007 s nominal delay to denote
the case when a fast sensor like event camera is used for
positioning, and used 0.075 s nominal delay to denote the case
when a slow sensor like vision camera or thermal camera is
used. The significant difference in latency between different
sensor modalities was demonstrated in [12]. In all three
nominal cases, the relative sensitivity predicts low sensitivity
of optimal performance to variations in aerodynamic drag
and a much higher sensitivity to time delay variations. These
results suggest that simulated models are more sensitive to
certain parametric mismatches when deployed in reality. For
example, when using QDrone or another platform of similar
dynamics, more efforts should be devoted to modeling of time
delay and its possible variations compared to aerodynamic
drag for best transferability results from simulation to reality.

The relative sensitivity can also be used to predict the
drop in system performance up until instability. Fig. 3 shows
the percentage drop from optimal performance in response to
percentage variations in time delay, when nominal dynamics
with time delay of 0.007 s are used. The results in Fig. 3 shows
that a decrease in the time delay of the system has little effect
on system performance. On the other hand, increasing the time
delay in the controller system causes the system performance
to drop until instability is reached at around τ = 0.00956 s
corresponding to time delay increase of approximately 37%
from the nominal delay value. Since parametric variations are
invetible in practice, lower bounds of performance can be
predicted using relative sensitivity for a given upper bounds
of parametric uncertainty.

V. CONCLUSIONS

This paper provided a theoretical investigation supported
by simulation results for the use of relative sensitivity to
evaluate the drop of optimal performance due to variations

introduced to the nominal model parameters. The effect of
variations of both time delay and aerodynamic drag was in-
vestigated. It was found that a small sized planar UAV similar
to QDrone was more sensitive to variations in delay compared
to aerodynamic drag. Such analysis provides an insight on the
design of simulators for robust simulation to reality transfer.
For example, accounting for small aerodynamic drag forces is
not important for the investigated UAV design. On the other
hand, ensuring that the delay in the position measurement
(e.g. WiFi delay) is within a certain bound is essential for
the overall performance of the system. Moreover, it is advised
that delay greater than the measured nominal should be used in
simulation design since lower delay in experimentation would
not lead to noticeable change in system performance, yet it
will lead to better robustness of the system.

Some future research directions are suggested based on the
presented results. First, the sensitivity function can be used
for the effective design of adversarial training of RL agents
or domain randomization of dynamic parameters. Second, the
selection of the nominal dynamics of the system used for RL
training can be done through the analysis of the sensitivity.
Lastly, different trajectories can be included in the sensitivity
analysis, which leads to RL agents that can perform well for
certain tasks.
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