
MARSIM: A light-weight point-realistic simulator
for LiDAR-based UAVs

Fanze Kong1, Xiyuan Liu1, Benxu Tang2, Jiarong Lin1, Yunfan Ren1,
Yixi Cai1, Fangcheng Zhu1, Nan Chen1, Fu Zhang1

Abstract— Low-cost, small-form factor LiDAR sensors have
enabled new opportunities for autonomous UAVs, but their
development relies on extensive simulations. Current simulators
are hard to simulate real-world environments due to the need
for dense mesh maps. We present a simulator that can generate
realistic point cloud scanning from point cloud maps for
LiDAR-based UAVs. Our lightweight simulator supports vari-
ous LiDAR types, dynamic obstacles, and multi-UAV systems in
the ROS framework. The simulator provides 10 high-resolution
point cloud maps of diverse real-world environments, facilitat-
ing diverse testing scenarios. Evaluation results show superior
performance in time and memory consumption compared to
Gazebo, with simulated UAV flights closely matching real-world
performance. This point-realistic, lightweight simulator aims
to bridge the gap between UAV simulation and experiments,
fostering future research on LiDAR-based autonomous UAVs.

I. INTRODUCTION

Recent developments of LiDAR technologies have signifi-
cantly lowered the cost and weight of LiDAR sensors, which
creates many opportunities for unmanned aerial vehicle
(UAV) applications, such as mine exploration [1], biological
data statistics [2], mapping [3], high-speed navigation [4],
and obstacle avoidance, etc. However, deploying UAVs to
these widespread applications requires extensive tests, which
are often cost-demanding since the system under test are
still in active development and hence may have a noticeable
failure rate (e.g., collision with the environment). A simulator
that resembles the reality can significantly reduce the time
and equipment cost occurred in UAV tests and has become
a crucial component of UAV developments.

Existing simulators (e.g., Gazebo [5], Webots [6], Airsim
[7]) have difficulties meeting the demand of high-resolution
realistic scene simulation for LiDAR-based UAVs due to the
following limitations: (i) their simulated environments are
mostly virtual, unrealistically simple, and man-made, which
possess a considerable gap from complex real-world scenes;
(ii) they only import mesh maps, which are difficult to obtain
from real-world environments that are often measured in 3D
point clouds by laser scanners or LiDARs. To the best of our
knowledge, there are no open-source and mature tools avail-
able for generating high-resolution and high-fidelity mesh
maps out of point cloud data. The commonly-used Poisson

1These authors are with the Department of Mechanical Engineering,
University of Hong Kong. {kongfz,xliuaa,jiarong.lin,
renyf,yixicai,zhufc,cnchen}@connect.hku.hk
and {fuzhang}@hku.hk. 2Benxu Tang is with the School of
Mechanical Engineering and Automation, Harbin Institute of Technology.
180320222@stu.hit.edu.cn. (Corresponding author: Fu
Zhang).

Fig. 1. A demo of MARSIM. (a) The point cloud map of the HKU main
building (one of ten real-world scenes of MARSIM). (b) A scan of points
of a Livox Avia LiDAR rendered directly from the point cloud map by
MARSIM. (c) The photo of the corresponding scene in the real world. It
is seen our proposed simulator can restore the structural details of the real
scene with high quality (more details can be found on https://youtu.
be/dVUi9jQled0.)

reconstruction [8] method is time-consuming and has low-
quality meshes on real point cloud data captured by LiDARs
due to occlusions and point density variations in large scene
scanning; (iii) they often rely on high-performance GPUs to
achieve real-time simulations in large complex mesh maps,
which puts a high requirement for computing platforms.

Motivated by these gaps, in this paper, we propose a
light-weight LiDAR-based UAV simulator, which has the
following features:

1) Directly utilizing point cloud maps reconstructed from
real environments for LiDAR scan rendering. The point
cloud map contains fine details of the environments and
could be easily obtained with a LiDAR.

2) High efficiency in computation and memory consump-
tion, and the ability to run on personal computers
without a dedicated graphics processing unit (GPU).

3) Versatility in supporting the simulation of three types
of dynamic obstacles, multi-UAV systems (with con-

1



SLAM
Planner AlgorithmOther UAVs’ points

Realistic Point Cloud Map
“map.pcd”

LiDAR Pattern
“pattern.csv”

Dynamic obstacles’ points LiDAR simulation 
CPU/GPU

A LiDAR-based UAV simulation

Point Cloud

Point Cloud

Odometry

Other UAVs’ Odometry

Multiple UAV simulation

System Overview

Visualization
(Rviz)

Dynamics and Kinematics 
Simulation 

Odometry

Motor Speed
Command

PlannerFlight 
Controller

Position Command 

IMU data

Configuration File

Scanned Point Cloud

SLAM

Odometry and 
Point Cloud

/drone_id/cloud

/drone_id/pos_cmd

/drone_id/Imu

/drone_id/Odom

Odometry

Fig. 2. The overall framework of our simulator (black dashed box) and how it interacts with external modules in ROS.

figurable flight control modules), and various solid-
state and mechanical spinning LiDAR models with
adjustable parameters (angular resolutions, scanning
patterns, field-of-views, sensing ranges, etc.).

4) We open-source our code on GitHub1, which is ROS-
compatible and can be easily integrated with SLAM
and path-planning algorithms to benefit the community.

II. SYSTEM OVERVIEW

As shown in Fig. 2, our UAV simulator is mainly com-
posed of three submodules: a built-in flight controller mod-
ule, a dynamics and kinematics simulation module, and a
LiDAR simulation module (modules in black, see Fig. 2).
The simulator is able to interact with planners, SLAM al-
gorithms, and visualization modules in the ROS framework,
forming a complete LiDAR-based UAV simulation system.

To use the simulator, users should first choose a LiDAR
model and supply a point cloud map of the environment.
Users can then plug in their own SLAM (or use ground-
truth odometry) and Planner algorithms to the UAV simulator
via the ROS topic names shown in Fig. 2 for verification
and visualization. Once the simulator starts, the dynamics
and kinematics simulation module starts to compute the
UAV’s odometry and IMU data, according to which the
LiDAR simulation module then renders the LiDAR scanned
point cloud. The simulated IMU data and LiDAR scans are
published in ROS, which could be used by the SLAM and
then by the planner module. Besides the static environments
represented by the point cloud map, the LiDAR simulation
also simulates point measurements on dynamic obstacles and
other UAVs in real time.

III. RESULTS

A. High-resolution realistic Point Cloud Maps

This paper provides high-resolution (0.01 m) point cloud
maps of ten real scenes for users to simulate, as shown in
Fig. 3. The 0.01-m resolution map here refers to the original

1https://github.com/hku-mars/MARSIM.git

point cloud processed by the 0.01-m spatial downsampling.
The scenes of the ten maps are three forests, three indoor
scenes, a historical building (the HKU main building), two
parking garages, and a large office.

B. Breakdown of computation resources consumption

We compare the time consumption between MARSIM
simulator and the Gazebo simulator. Since Gazebo can only
use mesh models, we transform the point cloud maps of
respective resolutions (see below) to mesh models using
Poisson reconstruction method [8]. We select five typical
scenes and compare the time and memory consumption of
rendering one scan of a Livox AVIA LiDAR (77°×70° FoV,
385×350 resolution, 30-m sensing range), respectively. For
each map, we test two cases: a high-resolution map (0.05-
m resolution) and a low-resolution map (0.2-m resolution).
The data is generated by randomly selecting 10 positions
and yaw angles of the UAV. The running time comparison
on a light-weight computing platform NUC 10 Kit (with an
i7-10710U max frequency 4.70-GHz CPU, 32-GB RAM) is
shown in Fig. 4. It can be seen that in low-resolution maps,
even the CPU version of MARSIM can achieve slightly less
computation time than the GPU-accelerated Gazebo simula-
tion. With GPU acceleration, MARSIM is two times faster
than Gazebo. In high-resolution maps, the difference is even
more obvious: the CPU version of MARSIM is two times
faster than the GPU-accelerated Gazebo simulation while the
GPU version of MARSIM is ten times faster. The reason
why Gazebo performed poorly in the experiments is because
of the large number (over 2 million) of triangular faces in
the generated mesh maps, which is necessary to retain a
level of detail similar to the corresponding point cloud. In
contrast, most existing robot simulations use very simple
mesh maps, which are mainly composed of large planes
and have a small number of triangular faces, which can be
simulated in real time. Moreover, as a simulator specifically
designed for point cloud, MARSIM does not need to process
the whole render pipeline to render meshes (e.g., reducing
the process of fragment shader, ray tracing, etc.) and complex

2



Fig. 3. Ten high-resolution point cloud maps provided by the simulator.

Common Forest Complex Parking Garage Historical Building Large Office Indoor-2
0.02

0.1

0.5

1.0

2.0

C
om

pu
ta

ti
on

 ti
m

e/
s

Running time comparison in 0.05m-resolution maps

Gazebo GPU
MARSIM CPU
MARSIM GPU

Common Forest Complex Parking Garage Historical Building Large Office Indoor-2
0.02

0.05

0.1

0.2

0.3

C
om

pu
ta

ti
on

 ti
m

e/
s

Running time comparison in 0.2m-resolution maps

Gazebo GPU
MARSIM CPU
MARSIM GPU

Fig. 4. Time consumption for rendering one Livox AVIA scan on a light-
weight computation platform (NUC).

physics simulation (like collision simulation), which decrease
the consumption of computation resources significantly.

In addition to the time consumption comparison, we also
collected the RAM consumption as shown in Table I. The
RAM consumption of our simulator is about half that of
the Gazebo simulator in both the CPU and GPU versions,
which also demonstrates the light-weight characteristics of
our simulator.

C. Support of different types of LiDARs and other functions

In order to increase the simulator’s versatility, a variety of
common LiDAR and depth camera models are also provided
in the simulator. As shown in Figure 5, the simulator supports
sensors such as Livox Avia, Livox Mid-360, VLP-32, VLP-
64, OS1-32, and Intel realsense D455. The simulator can
reproduce the scanning patterns of these sensors so that users
can use them directly without tuning any parameters.

TABLE I
MEMORY CONSUMPTION COMPARISON WITH GAZEBO ON A

LIGHT-WEIGHT COMPUTATION PLATFORM (NUC).

Resolution Map
RAM Consumption (GB)

Gazebo MARSIM
CPU GPU

0.2 m

Historical building 1.64 1.01 1.31
Complex Parking Garage 1.46 1.1 1.25
Large Office 1.68 1.04 1.13
Common Forest 1.48 1.37 1.73
Indoor-2 2.09 0.94 1.14

0.05 m

Historical building 6.97 4.04 3.43
Complex Parking Garage 6.72 3.51 3.06
Large Office 4.93 2.87 2.17
Common Forest 16.88 7.35 3.53
Indoor-2 3.73 2.51 1.84

D. Practical applications of the simulator

This simulator is mainly used to provide a testing and ver-
ification platform for the algorithm development of LiDAR-
based UAVs, especially motion planning and autonomous
exploration algorithms that require interaction with the en-
vironments. While previous experiments have shown the
application of our simulator in UAV motion planning, we
also carried out simulation experiments of autonomous UAV
exploration. Fig. 8 shows the autonomous exploration pro-
cess of a UAV carrying Livox Avia using FUEL [9] algorithm
in the indoor-2 map. It is worth mentioning that the simulator
has been successfully used to assist the development of
multi-UAV mutual location in [10] and motion planning
algorithm in [4], [11].

3



Fig. 5. Various LiDAR scan pattern support including Livox Avia (a),
D455 (b), Livox Mid-360 (c), and VLP 32 (d), respectively.

Fig. 6. Dynamic obstacles simulation in the simple forest map. The purple
lines represent UAV models moving in constant speeds, the green curves
represent spherical obstacles moving in free falling trajectories, and the red
points represent cubes moving in random walk.

IV. CONCLUSION

This paper proposes a LiDAR-based UAV simulator for
real environment simulation on light-weight computing plat-
forms. The simulator renders LiDAR scans directly on point
cloud maps, which is way easier to capture for real en-
vironments than mesh models used by existing simulators.
Moreover, due to the high accuracy of modern 3D LiDARs
and laser scanners, a point cloud map scanned from real
environments can truthfully represent the environment, which
dramatically bridges the gap between simulation and reality.
To maximize the practicality of the simulator, we further
provide ten high-resolution point cloud maps and support
the simulation of various types of LiDAR sensors, dynamic
obstacles, and multi-UAV simulation. These features can
meet the research and development needs of motion planning
algorithms and autonomous exploration algorithms of single
or multiple UAVs.

REFERENCES

[1] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and
M. Hutter, “Graph-based subterranean exploration path planning using
aerial and legged robots,” Journal of Field Robotics, vol. 37, no. 8,
pp. 1363–1388, Dec. 2020.

[2] K. Shah, G. Ballard, A. Schmidt, and M. Schwager, “Multidrone aerial
surveys of penguin colonies in antarctica,” Science Robotics, vol. 5,
no. 47, p. eabc3000, 2020.

[3] E. Karachaliou, E. Georgiou, D. Psaltis, and E. Stylianidis, “Uav for
mapping historic buildings: From 3d modelling to bim,” The Inter-
national Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 42, pp. 397–402, 2019.

Fig. 7. Multi-UAV planning simulation. The pink models are the UAVs,
and the red curves are the trajectories of the UAVs, avoiding the obstacles
of a realistic forest map.

Fig. 8. Demonstration of a UAV autonomous exploration simulation in
indoor-2 map, utilizing FUEL algorithm. The area scanned by the UAV
after different executing times are shown.

[4] Y. Ren, F. Zhu, W. Liu, Z. Wang, Y. Lin, F. Gao, and F. Zhang,
“Bubble planner: Planning high-speed smooth quadrotor trajectories
using receding corridors,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 6332–
6339.

[5] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[6] O. Michel, “Cyberbotics Ltd. Webots™: Professional Mobile Robot
Simulation,” International Journal of Advanced Robotic Systems,
vol. 1, no. 1, p. 5, Mar. 2004, publisher: SAGE Publications.

[7] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics. Springer, 2018, pp. 621–635.

[8] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006.

[9] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration
using incremental frontier structure and hierarchical planning,” IEEE
Robotics and Automation Letters, vol. PP, pp. 1–1, 01 2021.

[10] F. Zhu, Y. Ren, F. Kong, H. Wu, S. Liang, N. Chen, W. Xu,
and F. Zhang, “Decentralized lidar-inertial swarm odometry,” arXiv
preprint arXiv:2209.06628, 2022.

[11] Y. Ren, S. Liang, F. Zhu, G. Lu, and F. Zhang, “Online whole-body
motion planning for quadrotor using multi-resolution search,” arXiv
preprint arXiv:2209.06761, 2022.

4


