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Abstract— Reinforcement learning (RL) has shown promise
in creating robust policies for robotics tasks. However, contem-
porary RL algorithms are data-hungry, often requiring billions
of environment transitions to train successful policies. This
necessitates the use of fast and highly-parallelizable simulators.
In addition to speed, such simulators need to model the physics
of the robots and their interaction with the environment to a
level acceptable for transferring policies learned in simulation
to reality. We present QuadSwarm, a fast, reliable simulator
for research in single and multi-robot RL for quadrotors
that addresses both issues. QuadSwarm, with fast forward-
dynamics propagation decoupled from rendering, is designed
to be highly parallelizable such that throughput scales linearly
with additional compute. It provides multiple components
tailored toward multi-robot RL, including diverse training
scenarios, and provides domain randomization to facilitate the
development and sim2real transfer of multi-quadrotor control
policies. Initial experiments suggest that QuadSwarm achieves
over 48,500 simulation samples per second (SPS) on a single
quadrotor and over 62,000 SPS on eight quadrotors on a 16-core
CPU. Code: https://github.com/Zhehui-Huang/quad-swarm-rl

I. INTRODUCTION

Deep reinforcement learning (RL) has shown promise in
developing agile control policies for quadrotors [1]. How-
ever, RL algorithms require a large number of environment
transitions to train successful policies in simulation. This
motivates building fast and highly-parallelizable simulators.
Additionally, it is important for the simulator to be good
enough that policies trained on it transfer to the real world in
spite of unmodeled environment dynamics and the simplified
physics assumptions it will inevitably entail.

We describe a simulator, QuadSwarm, to facilitate research
in single and multi-robot RL for quadrotors that addresses
the aforementioned issues. Specifically, QuadSwarm supports
five main ingredients required to enable the development
of RL control policies for real quadrotors: (i) A reason-
ably accurate physics model of a popular existing hardware
platform, Crazyflie 2.x, and sufficient domain randomization
to account for unmodeled effects; (ii) Supports per-rotor
thrust control; (iii) Fast single-threaded throughput, highly
parallelizable, and scales with additional compute; (iv) A
diverse collection of learning scenarios for single and multi-
quadrotor teams; (v) 100% written in Python, which simpli-
fies further development and experimentation.
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zhehuihu@usc.edu). GSS holds concurrent appointments as a Professor at
USC and as an Amazon Scholar. This paper describes work performed at
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Fig. 1. QuadSwarm visualization: 8 quadrotors heading toward a common
goal location

We evaluate the speed of QuadSwarm on a machine with
AMD Ryzen 7 2700X CPU (16 CPU cores). QuadSwarm
achieves >48,500 simulation samples per second (SPS) in
an environment with a single quadrotor and >62,000 SPS
in an environment with eight quadrotors, enabling colli-
sion simulation. In the environment with eight quadrotors,
QuadSwarm receives eight samples per simulation step,
which speeds up simulation even though additional compu-
tation is required for collision. We have demonstrated zero-
shot transferability of RL control policies onto real hardware
utilizing QuadSwarm in a single [2] and multi-quadrotor [3]
scenarios.

II. RELATED WORK

A. Open-source Simulators that Support Single-robot RL

1) AirSim and Air Learning: AirSim [4] is a photo-
realistic simulator for multiple vehicles, such as cars or
quadrotors. However, there are three main limitations of
using AirSim in RL research. First, AirSim’s physics simu-
lation is coupled with rendering, which limits its simulation
speed and parallelization ability. Second, although AirSim
supports multiple quadrotors, the physical simulation of col-
lisions is overly simplified [8]. This makes AirSim unsuitable
for control tasks. Third, AirSim does not provide OpenAI
Gym [9] interface for multiple quadrotors. Air Learning [5],
based on AirSim, focuses on system-level design to address
the challenges of training RL policies and deploying them to
resource-constrained quadrotors. Air Learning makes AirSim
a better fit for learning by addressing several limitations of
AirSim, such as using an environment generator to increase
the generalization ability of trained policies. However, Air
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TABLE I
FEATURES COMPARING QUADSWARM WITH OTHER SIMULATORS THAT APPLICABLE FOR DEEP RL RESEARCH

Physics Supports Per-rotor Multi-agent
Simulator Dynamics Rendering Crazyflie Thrust Gym Wrapper Unified Reward Func Zero-shot Transfer
AirSim [4] FastPhysicsEngine UE4 / Unity ✗ ✗ ✗ ✗ Wait to Verify
Air Learning [5] FastPhysicsEngine UE4 ✓ ✗ ✗ ✗ Wait to Verify
GymFC [6] Gazebo OGRE ✗ ✓ ✗ ✗ Wait to Verify
Flightmare [7] Ad hoc Unity ✗ ✓ ✗ ✗ Wait to Verify
gym-pybullet-drones [8] PyBullet OpenGL ✓ ✓ ✓ ✗ Wait to Verify
QuadSwarm Ad hoc OpenGL ✓ ✓ ✓ ✓ ✓

Learning still inherits the three main limitations of AirSim,
mentioned above. Different from QuadSwarm, AirSim and
Air Learning do not support direct per-rotor thrust control.

2) GymFC: GymFC [6] focuses on tuning flight con-
trollers and developing neuro-flight controllers via RL and
supports per-rotor thrust control. While well-suited for de-
veloping and tuning single-robot controllers, there is very
little support for multi-robot control policies and a lack of a
diverse set of training scenarios for multi-robot teams.

3) Flightmare: Flightmare [7] balances simulation speed,
photo-realism, and physical accuracy. It supports a large
multi-modal sensor suite and supports two control modes:
collective thrust and body rates, and per-rotor thrust. How-
ever, Flightmare does not directly support multi-robot RL.

B. Open-source Simulators that Support Multi-robot RL
To the best of our knowledge, gym-pybullet-drones [8]

is the only multi-drone simulator besides QuadSwarm
that facilitates Deep RL research and development of
multi-quadrotor teams. Compared with gym-pybullet-drones,
QuadSwarm has three main features that gym-pybullet-
drones does not have. First, QuadSwarm implements diverse
training scenarios and provides a unified reward function for
these scenarios, which increases the generalization ability
of trained policies. Second, in multi-robot environments,
QuadSwarm uses interaction-related rewards, such as the
reward when two quadrotors collide with each other. The
interaction-related rewards can provide extra information,
besides post-collision dynamics, to quadrotors to learn colli-
sion avoidance behaviors. Third, QuadSwarm simulates non-
ideal motors and sensor noise to decrease the sim2real gap.
Besides, in a multi-robot environment with N quadrotors,
QuadSwarm uses the relative position and the relative ve-
locity of a fixed number K of nearest robots to represent
the neighbor information, where K ≪ N when N is large,
such as 128, while gym-pybullet-drones uses a boolean
distance adjacency matrix A ∈ RN×N . Compared with
policies trained in gym-pybullet-drones, policies trained in
QuadSwarm are thus more easily scalable to larger teams.

III. QUADSWARM

QuadSwarm is a modular quadrotor simulator that sup-
ports multiple quadrotors. Figure 2 shows six portable and
easy-to-modify modules of the simulator.

A. Quadrotor Dynamics
We use the following quadrotor dynamics [2]:

ẍ = g +
Rf

m
Ṙ = ω×R

ω̇ = I−1(τ − ω × (I · ω)) τ = τp + τth
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Fig. 2. QuadSwarm Simulator Overview

where ẍ is linear acceleration, g is the gravity vector, R is
the rotation matrix, f is the total thrust force in the body
frame, m is the mass, ω× is the skew matrix of the ω, I
is the inertia matrix, τ is the total torque, τp is the torque
along z-axis, τth is the torque produced by motor trusts.

The action of quadrotor i is ai ∈ R4, which represents
the normalized thrust provided by each motor. Following [2],
QuadSwarm models several aspects of real hardware in order
to prevent policies from overfitting to the simulator and to
facilitate sim2real transfer.

1) Motor Lag: At timestep t, given actions a(t) from a
policy sampled from an unconstrained Gaussian distribution,
we constrain the actions to be in the range [0, 1] and use
this to construct the normalized rotor angular velocity û(t).

f̂ (t) =
1

2
(CLIP(a(t)) + 1) û(t) =

√
f̂ (t)

We then use a first-order low-pass filter to model motor
lag û

(t)
f = αlag(û

(t) − û
(t−1)
f ) + û

(t−1)
f , where û

(t)
f is the

filtered rotor angular velocity, and αlag is the motor lag time
coefficient, which has been set such that the û

(t)
f satisfies 2%

settling time.
2) Motor Noise: At each timestep, we sample noise from

a Gaussian distribution and apply it to the motor noise
value produced on the previous timestep such that ϵ

(t)
f =

αndϵ
(t−1)
f + αnsN (0, 1), where ϵ

(t)
f is the motor noise at

timestep t, αnd is the decay ratio of the motor noise, αns

is the scale factor for the motor noise, and N (0, 1) denotes
the Gaussian distribution with zero mean and unit variance.

The final thrusts provided by each motor f (t) ∈ R4 is
constructed by the maximum thrust that each motor can
provide fmax, the filtered rotor angular velocity û

(t)
f , and the

motor noise ϵ
(t)
f . Specifically, f (t) = fmax · (û(t)

f )2 + ϵ
(t)
f .

B. Collision Simulation and Aerodynamics

Modeling accurate collisions is important for learning
robust collision-avoidance policies but is a non-trivial task.
In this section, we outline simple collision models used by
default in QuadSwarm that is implemented in a modular way



and can easily be swapped with a different collision model.
Although these models are simple, in [3], we demonstrated
they are good enough to train successful policies.

1) Quadrotor to Quadrotor: When two quadrotors col-
lide, instead of modeling complex interactions, such as
whether the propellers of two quadrotors touch, we imple-
ment a simple collision model based on the linear velocity
and the angular velocity.

ncol =
x1 − x2

∥x1 − x2∥2
ṽ = (v2 · ncol − v1 · ncol) · ncol

v1 ← α1(v1 + ṽ + ϵv1) v2 ← α2(v2 − ṽ + ϵv2)

ω1 ← ω1 + ϵω1 ω2 ← ω2 + ϵω2

Where x1, x2 are the positions of two quadrotors, v1, v2 are
the linear velocity of two quadrotors, α1, α2 are the linear
velocity decay factor of two quadrotors, ϵv1, ϵv2 are the linear
velocity noise of two quadrotors, and ϵω1, ϵω2 are the angular
velocity noise of two quadrotors.

2) Quadrotor to Wall or Ceiling: The collision model
between a quadrotor and walls or ceiling is the same as the
quadrotor-quadrotor collision model, except that the collision
updates are only applied to the quadrotor.

3) Quadrotor to Ground: We consider two situations of
quadrotor interaction with the ground. When the quadrotor
hits the ground we set the linear velocity, angular velocity,
and acceleration to zero, regenerate the rotation matrix by
setting the normal vector of the quadrotor upward, and
reset all momenta. When the quadrotor is on the floor,
and the thrust is not enough to allow the quadrotor to
take off, we arrest motion on the floor with sufficiently
high friction. When the linear velocity of the quadrotor
is 0, the friction direction is opposite to the thrust force
direction in the xy plane, and the final force function is:
fxy ← max(fxy−µ(mg−fz), 0). When the linear velocity is
bigger than 0, the friction direction is opposite to the velocity
direction in the xy plane, and the final force function is:
fxy ← fxy − µ(mg − fz). In functions above, fxy is the
thrust force in the xy plane, fz is the thrust force in z axis,
µ is the friction coefficient, and g is the gravity constant.

4) Downwash: Our downwash model is a simplified
version of the model proposed in [10]. We only model
downwash effects when two quadrotors overlap in the xy
plane and within a pre-defined distance along the z axis.

ẍ = k1(k2δpos + b1) + ϵd ω̇ = ϵωd

Where δpos is the relative distance between quadrotors, ω̇ is
the change rate of angular velocity, which is used to simulate
the aerodynamic disturbances, and k1, k2, b1 are constants,
ϵd, ϵωd are Gaussian noise.

C. Observations

The observations of quadrotor i are:

[δxi, vi, Ri, ωi, [x̃i1, ṽi1, ..., ˜xiK , ˜viK ]]

where δxi represents the relative position between the
quadrotor i and its goal, x̃i1, ṽi1 represent the relative posi-
tion and relative velocity to the closest quadrotor, ˜xiK , ˜viK

represent the relative position and relative velocity to the
Kth closest quadrotor. K is a hyperparameter. In the single
quadrotor environment, K is set to 0.

To increase zero-shot sim-to-real transfer ability, we add
sensor noise to the observations [2]:

ϵx = U (0 , 5e−3 ) ϵv = U (0 , 1e−2 ) ϵω = N (0, 1.75e−4)

where U represents the uniform distribution, N represents
the Gaussian distribution, ϵx is the position noise, ϵv is the
linear velocity noise, ϵω is the angular velocity noise.

D. Training Scenarios

To design diverse training scenarios, we use the quadro-
tor team’s goals to construct several geometric formations,
including a circle, grid, sphere, cylinder, and cube. We use
this pool of geometric formations to design three groups of
training scenarios.

1) Static formations: Uniformly sample a geometric for-
mation from the pool and randomly place it in the room.

2) Dynamic formations: Change the positions and/or the
geometric formation of goals after a random period of time
within an episode. There are four variants:

• Dynamic goals: regenerate the positions and the geo-
metric formation of goals after a random period of time.

• Swap goals: keep the geometric formation but shuffle
the positions of goals after a random period of time.

• Shrink & Expand: keep the geometric formation of
goals, but change the formation size over time.

• Swarm-vs-Swarm: split quadrotors into two groups, and
fix the formation center of each group. After a random
period of time, resample the formation shape and swap
the goals of the two groups.

3) Evader Pursuit: Quadrotor(s) pursue one moving goal.
We parameterize the trajectories in two ways - using a 3D
Lissajous curve, and randomly sampled consecutive points
connected by Bezier splines, respectively.

E. Reward Components

We provide diverse reward components in the simulator.
There are two groups of reward components. One is based
on the quadrotor’s state, and the other is based on the
interactions with other objects. All α below are constants.
Quadrotor State:

r(t)pos = αpos

∥∥∥δ(t)xi

∥∥∥
2

r
(t)
vel = αvel

∥∥∥v(t)∥∥∥
2

r
(t)
ori = αoriR

(t)
22 r

(t)
spin = αspin

∥∥∥ω(t)
∥∥∥
2

r
(t)
act = αact

∥∥∥f (t)
∥∥∥
2

r
(t)
δact = αδact

∥∥∥f (t) − f (t−1)
∥∥∥
2

r
(t)
rot = αrot

tr(R(t))− 1

2
r(t)yaw = αyawR

(t)
00

where reward components based on the distance to the goal,
linear velocity, the normal vector in the z-axis, angular
velocity, actions, change of actions, rotation, and yaw.
Interaction with Other Objects: We use a weighted combi-
nation of indicator functions for the conditions when the
quadrotor hits the floor, stays on the floor, hits a wall, hits



the ceiling, or hits other quadrotors. We also use a weighted
combination of the relative distance between quadrotors for
the condition when quadrotors are close to each other.

F. Reinforcement Learning Library Interface

We integrate Sample Factory [11], a fast RL library, with
QuadSwarm to decrease the wall-clock training time. Sample
Factory supports synchronous and asynchronous modes of
policy proximal optimization (PPO) algorithms. For multi-
agent RL, it currently supports Independent PPO.

IV. SIMULATION SPEED

To balance speed, readability, and flexibility, we decide
to: (i) use Python to implement the minimum requirements
of physics simulation and rendering, (ii) use Numba [12],
a just-in-time compiler that is able to translate Python and
NumPy code into machine code to speed up physics simula-
tions, and (iii) decouple rendering from physics simulations.
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Fig. 3. Simulation Speed: gym-pybullet-drones vs QuadSwarm

We evaluate simulation speed on a machine with AMD
Ryzen 7 2700X CPU (16 CPU cores). To fairly compare
QuadSwarm with gym-pybullet-drones, we set both simu-
lators with 100 Hz control frequency, 200 Hz simulation
frequency, and 15 seconds episode duration time. In an
environment with multiple quadrotors, each quadrotor has the
same observation space, thus QuadSwarm receives multiple
samples per simulation step.

Fig. 3 shows the simulation speed comparison between
gym-pybullet-drones and QuadSwarm. In a single quadrotor
setting, QuadSwarm approaches 48,589 SPS - ∼2.2x faster
than gym-pybullet-drones. With multiple quadrotors and col-
lision simulation, QuadSwarm approaches the fastest simu-
lation speed, 62,042 SPS, when the number of quadrotors is
eight - ∼2.0x faster than gym-pybullet-drones.

V. EXAMPLES

We used QuadSwarm as the main simulation platform in
two projects that demonstrated the transfer of learned control
policies on single and multiple quadrotors. For a single
quadrotor [2], we show how to learn a policy to stabilize
multiple different quadrotors with domain randomization.
For multiple quadrotors [3], we show how to learn a policy
to control up to 128 quadrotors to approach their goals while
avoiding collisions in diverse scenarios.

VI. CONCLUSIONS

We describe QuadSwarm, a simulator for Deep RL re-
search on single and multi-quadrotor control policies and
their sim2real transfer to real hardware. We demonstrate how
QuadSwarm integrates five key ingredients: (i) a reasonable
physics model of Crazyflie 2.x, with domain randomization
to account for unmodeled effects; (ii) per-rotor thrust con-
trol; (iii) fast, high parallelization, and scaling with addi-
tional compute; (iv) a diverse collection of learning scenarios
for single and multi-quadrotor teams; (v) 100% written in
Python. Our experiments suggest that QuadSwarm can be
used to create robust quadrotor policies that successfully
deploy to real hardware and that it is a useful and promising
tool that will accelerate research in robust single and multi-
quadrotor control policies for agile flight. We are working
on extending QuadSwarm to support multiple obstacles,
providing more accurate aerodynamic effects, and integrating
with additional Deep RL libraries, such as PyMARL2 [13].
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