Simulation-Guided Testing for Autonomous Aerial
Robotics Applications

Rafael Perez-Segui
Computer Vision and Aerial Robotics
Universidad Politécnica de Madrid
Madrid, Espaifia

0000-0002-9508-1055

David Perez-Saura
Computer Vision and Aerial Robotics
Universidad Politécnica de Madrid
Madrid, Espafia

0000-0003-2571-3165

Abstract—The deployment of autonomous unmanned aerial
vehicles (UAVs) is rapidly increasing due to their ability to
perform a variety of tasks, including industrial inspection, search
and rescue, and transportation. To ensure the safe and efficient
operation of UAVs, simulation testing is essential for identifying
and mitigating potential risks. In some applications, such as
industrial inspections, performing real flight experiments on
the final installations is complicated or even risky, such as
wind turbines or photovoltaic panels. In this case, being able
to perform real flights using simulated data from the final
application allows more thorough testing of the robotic system
without putting expensive industrial devices at risk. In this paper,
we show how the use of the Aerostack2 framework eases the step
between simulation and final application using simulation data
for real flight experiments.

Index Terms—Aerial Robotics, ROS 2, Gazebo, Simulation,
Aerostack2

I. INTRODUCTION

The use of simulation in aerial robotics has proven to be
crucial in the development of autonomous algorithms, particu-
larly in drones. One of the significant benefits of simulation is
the ability to test and validate algorithms before deployment.
Engineers can identify and resolve any issues in a virtual
environment without incurring high costs or risking damage
to the drone. The simulation also allows engineers to evaluate

This work has been supported by the project COPILOT ref.
Y2020\EMT6368 “Control, Monitoring and Operation of Photovoltaic Solar
Power Plants by means of synergic integration of Drones, IoT, and advanced
communication technologies”, funded by Madrid Government under the R&D
Synergic Projects Program. We acknowledge the support of the European
Union through the Horizon Europe Project No. 101070254 CORESENSE.
This work has also been supported by the project INSERTION ref. ID2021-
1276480BC32, "UAV Perception, Control and Operation in Harsh Environ-
ments”, funded by the Spanish Ministry of Science and Innovation under
the program “Projects for Knowledge Generating”. The work of the second
author is supported by the Grant FPU20/07198 of the Spanish Ministry for
Universities. The work of the fourth author is supported by the Spanish
Ministry of Science and Innovation under its Program for Technical Assistants
PTA2021-020671.

Pedro Arias-Perez
Computer Vision and Aerial Robotics
Universidad Politécnica de Madrid
Madrid, Espafia

0000-0001-7166-9367

Miguel Fernandez-Cortizas
Computer Vision and Aerial Robotics
Universidad Politécnica de Madrid
Madrid, Espaiia

0000-0002-3822-075X

Javier Melero-Deza
Computer Vision and Aerial Robotics
Universidad Politécnica de Madrid
Madrid, Espafia

0000-0002-1420-2960

Pascual Campoy
Computer Vision and Aerial Robotics
Universidad Politécnica de Madrid
Madrid, Espafia

0000-0002-9894-2009

the performance of the algorithms under various conditions,
such as different weather patterns, lighting conditions, and
obstacles. Another advantage of simulation in autonomous
algorithms is the ability to anticipate and address potential
safety issues before deployment. Autonomous drones involve
potential safety hazards, including collisions with objects
and people. Simulation allows researchers and engineers to
anticipate and address potential safety issues, ensuring that
the algorithm operates within safe parameters.

Once a design has been optimized in simulation, it can be
tested in real flight experiments to validate its performance and
safety. But carrying out experiments in certain environments
can be risky. For example, industrial installations contain
expensive and sensitive equipment, and accidents can result
in costly damage. In such cases, using simulation data to
inform and guide real-world experiments allows testing the
behavior of the robotic system far from the final installations,
reducing the risk of costly accidents and increasing safety
during development.

This work presents two main contributions. First, it explains
the development process of a real industrial application using
the Aerostack framework [|1], which provides a comprehen-
sive and flexible solution for the design and implementation
of autonomous UAVs. Second, it demonstrates the use of
simulation data to guide and validate real flight experiments.
This approach allows for a safer and more efficient testing
process, as potential issues and risks can be identified and
mitigated in the simulation environment before moving on to
final environment experiments.

II. RELATED WORK

Related work in research for aerial robotics shows a big
number of simulators. We mention only a few of the existing

Uhttps://github.com/aerostack2/aerostack2

https://orcid.org/0000-0002-9508-1055
https://orcid.org/0000-0001-7166-9367
https://orcid.org/0000-0002-1420-2960
https://orcid.org/0000-0003-2571-3165
https://orcid.org/0000-0002-3822-075X
https://orcid.org/0000-0002-9894-2009
https://github.com/aerostack2/aerostack2

open-source simulators that have been widely used by aerial
robotics, highlighting important features and limitations of
each one.

RotorS [2]|: Is a modular Micro Aerial Vehicle (MAV) sim-
ulation framework built on Gazebo [3|], which allows a quick
start to perform research on MAVs. The simulator was de-
signed in a modular way so that different controllers and state
estimators can be used interchangeably, while incorporating
new MAVs is reduced to a few steps. The provided controllers
can be adapted to a custom vehicle by simply changing a
parameter file. Different controllers and state estimators can
be compared with the provided evaluation framework. All
components were designed to be analogous to their real-world
counterparts. This allows the usage of the same controllers and
state estimators, including their parameters, in the simulation
as on the real MAV.

AirSim [4]: Is a photo-realistic simulator built on Unreal
Engine that offers physically and visually realistic simulations.
It includes a physics engine that can operate at a high
frequency for real-time hardware-in-the-loop (HITL) simula-
tions with support for popular protocols (e.g. MavLink). The
simulator is designed from the ground up to be extensible to
accommodate new types of vehicles, hardware platforms and
software protocols.

FlightGoggles [5]]: Is an open-source photo-realistic sensor
simulator for perception-driven robotic vehicles. It consists of
two separate components, the photo-realistic rendering engine
built on Unity and a quadrotor dynamics simulation engine. It
also provides an interface with real-world aircrafts for image
and data processing.

Flightmare [6]: Like FlightGoggles, is a flexible modular
quadrotor simulator composed of two main components: a
configurable rendering engine built on Unity and a flexible
physics engine for dynamics simulation. Those two compo-
nents are totally decoupled and can run independently from
each other. In addition, it also provides an interface with
Gazebo simulator.

In conclusion, after examining several simulators for au-
tonomous drone flights, it can be concluded that they do
not provide a direct pathway from simulation to real-world
drone operations. Rather, they focus on specific components
or aspects of drone flights, such as simulation training en-
vironment, testing of specific platform or image processing
algorithms. These simulators are valuable tools for training and
testing autonomous drone systems in a controlled environment,
but they do not necessarily prepare them for the complex
and unpredictable realities of real-world drone operations. In
addition, they do not facilitate the simulation for any platform,
specializing in several with specific characteristics.

III. METHODOLOGY

Aerostack? framework interaction with the Platform inter-
face facilitates the integration of both physical and simulated
interfaces, without requiring the rest of the framework to
distinguish between the two. This platform agnostic feature is

a fundamental pillar that strengthens the sim2real capabilities
of the algorithms developed []1]].

For simulation purposes, Aerostack2 provides a platform
based on Gazebo Simulator [3], which sends control com-
mands to the simulated UAV. In order to do so, the platform
receives the control commands from the motion controller. As
the platform is using a common interface, it can be easily
decoupled for a real UAV’s platform, which will receive the
control commands to be sent to the UAV exactly the same
way.

In order to launch the simulation, aerial robots and external
objects are defined in a configuration file. This configura-
tion file is then loaded by the Aerostack2’s component that
launches the simulation with every asset of each model that
is defined in the configuration file, alongside every ROS 2 to
Gazebo Bridge that is unrelated to aerial robots. Aerostack2
Gazebo platform is in charge of launching every ROS 2 to
Gazebo Bridge related to aerial robots and their sensors that
are defined in the configuration file. This scheme is shown in

Fig. [Tl
&=

Operator file
configuration

Aerostack2

ROS 2 - Gazebo
ridge

Aerial Platform
Gazebo

Gazebo assets

Fig. 1. Gazebo simulator launch in Aerostack2

Gazebo

After this, through ROS 2 - Gazebo bridge, Aerostack2 can
communicate with the simulator using the ROS 2 common
communication, that is, topic, services, actions, and transfor-
mation frames (tf2).

ROS 2 - Gazebo

Bridge 7
ROS2
Communication communication e =
Aerostack2

Gazebo
S BEEEE >
Gazebo
Fig. 2. Gazebo simulator communication with Aerostack2

The development of autonomous systems in aerial robotics
typically involves three stages of simulation: simulate the air-
craft and its environment in a simulation station, simulate them
using the final hardware, and perform the real implementation.
For this, the Aerostack2 framework proposes the following
structure, shown in Fig.

A. Simulate in Simulation Station

The first stage of development involves the simulation of the
aircraft, environment, and algorithms in a simulation station.
In this, engineers design and develop a simulation environment
that includes the virtual representation of the aircraft and
the surrounding environment. The simulation station allows

Simulation
/

Aerostack2

H Aerial Platform J‘ o) i_pli

Autonomous
Algorithms

&

Operator

Fig. 3. Simulation scheme in Aerostack2, where the aircraft can be simulated
in different ways or be the real one, keeping the same algorithms and only
modifying the aerial platform

the engineers to test and validate the performance of the
algorithms in a virtual environment before deploying them on
a physical aircraft.

B. Simulate in Deployment Hardware

The second stage of development involves the simulation
of the environment in the simulation station, the processing
of algorithms on the on-board computer, and the simulation
of the platform using hardware in the loop technique. In
this, engineers use the simulation station to simulate the
environment and test the algorithms on the on-board computer.
They then use hardware in the loop to simulate the behavior
of the platform in response to the algorithms processed by
the on-board computer. This stage allows engineers to test
and validate the performance of the system under realistic
hardware limitations and identify any issues that may arise.

C. Testing on Deployment Hardware

The final stage of development involves the testing of
the system with the on-board computer, real hardware, and
real environment. In this stage, engineers deploy the system
on a physical aircraft and test its performance in a real-
world environment. This stage allows engineers to validate
the performance of the system under realistic conditions and
check if the execution is faithful to the simulation.

IV. USE OF CASE FOR WIND TURBINE INSPECTION

This use of case consists of the inspection of a wind
turbine’s blades while these are rotating. The nacelle connected
to the rotor that makes the blades rotate is also rotating along
its z-axis, located at the point where it is connected to the
tower.

The mission consists of following the inspection points
related to the wind turbine rotor. These points are calculated
depending on certain parameters such as the blade’s length,
the intrinsic camera parameters, or the security inspection
distance.

The prior data received from the wind turbine is the position
in WGS84 coordinates of the base of the wind turbine, blades
length, and rotor height. The real-time data received from the
wind turbine is the orientation of the rotor given in azimuth.

A. Simulation of the wind turbine

For the simulation of the wind turbine, a model of a wind
turbine has been created in Blender tool. This model has been
divided into three main parts. These parts are then turned into
separate SDFormat models and connected by rotatory joints.
These parts are:

o Tower: static part of the wind turbine. The base of the
tower has been set as the origin of our wind turbine
coordinate system.

o Nacelle: it consists of a box that connects the tower with
the rotor. The top of the tower is connected by a rotation
joint that rotates in yaw.

o Blades: this model contains the rotor with the blades. The
rotor is connected to the front of the nacelle with another
rotation joint that rotates in roll.

In order to move the blades and the nacelle within the
simulation, Gazebo’s joint speed controller plugins has been
used for each of the joints within the model. These plugins
have then been bridged to ROS 2.

A simulated GPS sensor has been integrated into the nacelle
so we can receive the WGS84 coordinates. The cartesian
orientation of this sensor is used to calculate the azimuth which
is then sent through a ROS 2 topic. It primordial to get real-
like data structures and values from the simulation.

As the mission is planned with poses relative to the wind
turbine rotors, every component of the wind turbine has been
added to the global transformation tree, we address in this way
the problem of navigating in the global coordinate system with
the given relative poses.

B. Simulation of the UAV

The UAV simulation is mainly based on the Gazebo Mul-
ticopter Velocity Control plugin. This velocity controller for
multicopters allows control over the linear velocity and the
yaw angular velocity of the vehicle. It requires a vehicle with
at least four rotors (Multicopter Motor Model plugin) for the
controller to function.

In addition, other Gazebo plugins are added to the quadrotor,
a magnetometer, an IMU and a GPS receiver.

C. Methodology

The methodology used to address this problem consists on
using a fully simulated environment first, and then start de-
taching simulated components for real components gradually
in order to finally deploy the mission in a real environment in
a secure and efficient way. This process has taken three steps
before deploying every component in a real environment.

1) Simulation in Gazebo: Every hardware component is
simulated in Gazebo simulator. Aerostack? receives the data
bridged from Gazebo coming from the UAV and the wind
turbine. The control commands for both the wind turbine and
the UAV are bridged from ROS 2 and sent to Gazebo, as
shown in Fig.

ROS 2 - Gazebo
Aerostack2 aridge
actuator

commands

Aerial Platform

\Wind Turbine Inspection Simulator|

Mission Logic

wind turbine
state

Fig. 4. Fully simulated wind turbine inspection

2) Hybrid simulation, Gazebo and DJI’s HITL: Gazebo’s
basic quadrotor is detached from the simulation and substituted
for DJI’s Hardware In The Loop (HITL) as seen in image [3}
This step ensures that the platform that is going to be used
in the real flight works with the initial mission planning and
data regarding the wind turbine.

Aerial Platform
DJI

I- N

----- Object to TF

Aerostack2 DUHITL

actuator
commands

drone commands

o i drone state Wind Turbine Inspection Simulator]
Mission Logic

wind turbine
state

R

ROS 2- Gazebo
Bridge

Fig. 5. Integrating Gazebo simulation and DJI’s HITL

3) Simulation in Gazebo with real flight: The last step
before real deployment consists of substituting DJI’'s HITL
for the real hardware as shown in Fig. [The wind turbine
simulation allows testing the aerial system in real flights
without endangering a wind turbine.

Aerostack2 \ el
actuator drone commands
commands , | Aerial Platform
DJI
Wind Turbine Inspection Simulator]

[State Estimator Mr
L
==1
H wind turbine
' .
----- Objectto TF e—S8

ROS 2 - Gazebo
Bridge

Mission Logic

b

Q:’;EAL

Fig. 6. Integrating Gazebo simulation and Real flight

In order to monitor the mission planning and execution,
all the information coming from every component used in this
step has been integrated into RViz2 visualizer. The information
integrated can be seen in Fig.

V. CONCLUSIONS AND FUTURE WORK

We have highlight the importance of simulation for safer
and more efficient testing of autonomous unmanned aerial

Fig. 7. Integrating Gazebo simulation and real flight. The inspection way-
points are in green, the trajectory in red and the axes represent the drone pose.

vehicles algorithms. The experiment presented showcases the
use of simulation data for wind turbine inspection, using a
hybrid testing architecture to evaluate the algorithms safely.
The use of the Aerostack2 framework is shown to be beneficial
in facilitating the simulation stages of UAV testing, resulting
in more efficient and reliable testing processes. Overall, the
framework’s implementation can significantly improve the
safety and efficiency of testing processes, making it a valuable
asset in the development of UAV algorithms.

Moving forward, the next step is to test the algorithms used
for simulation process in real-world scenarios with a wind
turbine. It will be crucial to compare the results obtained from
simulation testing with those obtained from the real-world
experiments, in order to assess the accuracy and reliability
of the simulation model. Overall, this future work will pro-
vide a more comprehensive understanding of the efficacy of
the simulation model and the Aerostack? framework in the
development of autonomous UAVs for industrial inspection
applications.

REFERENCES

[1] M. Fernandez-Cortizas, M. Molina, P. Arias-Perez, R. Perez-Segui,
D. Perez-Saura, and P. Campoy, “Aerostack2: A software framework for
developing multi-robot aerial systems,” 2023.

[2] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating
System (ROS): The Complete Reference (Volume 1). Cham: Springer
International Publishing, 2016, ch. RotorS—A Modular Gazebo
MAV Simulator Framework, pp. 595-625. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-26054-9_23

[3] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. 1EEE, 2004, pp. 2149-2154.

[4] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics: Results of the 11th International Conference. Springer, 2018,
pp. 621-635.

[5S] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “Flightgoggles:
Photorealistic sensor simulation for perception-driven robotics using
photogrammetry and virtual reality,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2019,
pp. 6941-6948.

[6] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning, 2020.

http://dx.doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23

	Introduction
	Related Work
	Methodology
	Simulate in Simulation Station
	Simulate in Deployment Hardware
	Testing on Deployment Hardware

	Use of case for wind turbine inspection
	Simulation of the wind turbine
	Simulation of the UAV
	Methodology
	Simulation in Gazebo
	Hybrid simulation, Gazebo and DJI's HITL
	Simulation in Gazebo with real flight

	Conclusions and Future Work
	References

