
Aerial Gym – Isaac Gym Simulator for Aerial
Robots

Mihir Kulkarni Theodor J. L. Forgaard Kostas Alexis

Abstract—Developing learning-based methods for navigation
of aerial robots is an intensive data-driven process that requires
highly parallelized simulation. The full utilization of such simu-
lators is hindered by the lack of parallelized high-level control
methods that imitate the real-world robot interface. Responding
to this need, we develop the Aerial Gym simulator that can
simulate millions of multirotor vehicles parallelly with nonlinear
geometric controllers for the Special Euclidean Group SE(3)
for attitude, velocity and position tracking. We also develop
functionalities for managing a large number of obstacles in
the environment, enabling rapid randomization for learning of
navigation tasks. In addition, we also provide sample environ-
ments having robots with simulated cameras capable of capturing
RGB, depth, segmentation and optical flow data in obstacle-rich
environments. This simulator is a step towards developing a –
currently missing – highly parallelized aerial robot simulation
with geometric controllers at a large scale, while also providing a
customizable obstacle randomization functionality for navigation
tasks. We provide training scripts with compatible reinforcement
learning frameworks to navigate the robot to a goal setpoint
based on attitude and velocity command interfaces. Finally, we
open source the simulator and aim to develop it further to speed
up rendering using alternate kernel-based frameworks in order
to parallelize ray-casting for depth images thus supporting a
larger number of robots.

Index Terms—Parallelized aerial robot simulation, Parallelized
geometric control, Environments for reinforcement learning

I. INTRODUCTION

In recent years, aerial robots have gained significant atten-
tion in various applications, ranging from search and rescue
missions to automated site inspections. These environments
can present complex geometries and may present challenges
to the perception systems owing to darkness, airborne particles,
geometric self-similarities, etc. Due to the highly complex
nature of the problem, there is a renewed interest in utilizing
learning-based navigation methods to operate in these settings.
The development of such methods is an intensive data-driven
process, necessitating highly parallelized simulation environ-
ments. Despite the existence of powerful simulators, the full
potential of these tools remains untapped due to the absence of
parallelized control methods that imitate the real-world robot
interface and allow users to provide high-level commands to
the robot.

We address this gap by harnessing the capabilities of
NVIDIA Isaac Gym to design an aerial robot simulator that
enables the parallel simulation of thousands of multirotor
vehicles. We integrate nonlinear geometric controllers for

All authors are affiliated with the Norwegian University of Science and
Technology (NTNU), Trondheim, Norway.

Fig. 1. Visualization of the Aerial Gym simulator with multiple simulated
multirotor robots. Instances show – in clockwise order – the simulation of the
robots in obstacle-free environments, a zoomed-out view of separated box-like
environments, as well as cluttered environments for navigation consisting of
randomly distributed obstacles of different shapes.

the Special Euclidean Group SE(3) [1] to achieve accurate
attitude and velocity tracking in the vehicle frame, or position
tracking in the inertial frame, while taking advantage of GPU
parallelization. We rely on the underlying physics interface to
simulate forces, torques, and collisions, while modeling the
robot as a rigid body.

Moreover, we develop interfaces for efficiently managing a
large set of objects in the environment, defined using Universal
Robot Description Format (URDF) files. This facilitates rapid
randomization of the environment for learning in cluttered set-
tings. Our simulator provides sample environments containing
robots equipped with simulated cameras capable of capturing
RGB, depth, segmentation, and optical flow data at thousands
of frames per second (a total of ∼ 1800 fps for 210 robots).
These powerful tools and simulators mark a significant step
towards the development of a highly parallelized aerial robot
simulation environment with geometric controllers at a large
scale, coupled with a customizable obstacle randomization
functionality. We release our simulator as open-source soft-
ware at https://github.com/ntnu-arl/aerial gym simulator and
shall continue its development by leveraging alternative kernel-
based frameworks to parallelize ray-casting for depth images,
ultimately supporting simulation of an even larger number of
robots. We will also release example scripts that show the
robots interfaced with commonly used learning frameworks
(e.g., cleanRL [2] or rl-games [3]) to learn to reach a target
setpoint using attitude control in an obstacle-free environment.

In the remainder of this paper, Section II presents the related

https://github.com/ntnu-arl/aerial_gym_simulator


work, followed by the design of the proposed simulator for
aerial robots in Section III. Sections IV and V detail the overall
design, the parallelized geometric controller and the obsta-
cle asset management functionality respectively. Section VI
benchmarks the performance of the simulator, followed by
conclusions in Section VII.

II. RELATED WORK

Several simulators have been developed to simulate aerial
robots for a variety of tasks such as navigation, mapping,
and control. RotorS [4] is a Gazebo-based [5] simulator that
provides a variety of multirotors with RGB-D sensors. Air-
sim [6] is a photo-realistic simulator built on Unreal Engine.
The simulator supports both hardware- and software-in-the-
loop simulations for a limited number of simulated robots.
Flightmare [7] offers the functionality to simulate a large
number of robots in parallel. However, the robot dynamics
simulated by Flightmare are calculated on parallel threads on
the CPU, limiting the number of robots that can be simulated.
Flightmare uses the Unity rendering engine, allowing high-
fidelity graphics simulation.

NVIDIA’s Isaac Gym [8] provides GPU-accelerated highly
parallelized simulation functionality for robot learning tasks.
This simulator is being extensively used to simulate articu-
lated and multi-linked robots [9]. Some simplified simulation
environments for aerial robots have also been developed to
work with it [8], however, the models either lack fidelity, or
they only provide interfaces to command motor forces but
ignore the effect of torque generated by the motor on the
body. They also do not support any other higher-level reference
tracking interfaces. Accordingly, to provide the simulation
capability exploiting the GPU, our simulator is built upon the
Isaac Gym simulator. Then, we further provide GPU-based
geometric attitude and velocity controllers thus supporting a
wider range of control inputs enabling the simulator’s utility
to a larger set of use cases and the capability to train for real-
world deployments with potentially reduced sim-to-real gap.

III. SIMULATOR DESIGN

We build the proposed Aerial Gym simulator utilizing the
tensor-based parallelization provided by NVIDIA Isaac Gym
simulator [8]. We design our simulator with the appropri-
ate interfaces to imitate standardized reinforcement learning
environments [10] in order to facilitate easy extension of
commonly-used learning-based algorithms for robot naviga-
tion. We design a generalized asset management class, that
allows a user to load URDF files describing obstacles from a
folder structure. We define an asset - in line with NVIDIA
Isaac Gym - to represent a mesh entity in simulation that
may contain links, joints, and other physical properties. In
our case, assets are considered to be represented by URDF
files, however, extending this to other supported formats is
trivial. The selection and loading of these files happen in
a randomized fashion per environment, where a predefined
number of different obstacle meshes per custom-defined class

Fig. 2. Block diagram of the Aerial Gym simulator with the components
to control the simulated robots and manipulate and randomize the simulated
obstacles (also called assets) in multiple parallel environments.

of obstacles are picked randomly to be included in a simu-
lation environment. This allows various environments to have
sufficient diversity and prevent the reuse of identical obstacle
meshes across environments. The robots simulated in obstacle-
rich environments can also be equipped with camera sensors
capable of capturing RGB, depth, segmentation, and optical
flow images. The position and orientation of the camera
sensors with respect to the robot are configurable and may
be randomized. We aggregate images into a consolidated
tensor and provide direct access to this tensor. In addition,
we adapt nonlinear geometric controllers for aerial robots and
– importantly – parallelize the controllers to be run on the
GPU. This allows for the capability of providing high-level
input commands to the robots, relying on interfaces that are
available on commonly used flight controllers for multirotor
aerial vehicles [11]. The structure of the simulator is shown
as a block diagram in Figure 2, where the interaction between
various modules is highlighted. A high-level planner or a
learning-based framework can access the robot state which
includes the position, orientation, linear velocity, and angular
velocity of the robot. Access is also provided to the image
tensors from the simulated sensors onboard the robot. Data
from these sensors can be utilized by user-provided high-level
planning or learning methods for navigation tasks or simulated
data collection. In addition, access to the state of each obstacle
is made available to the user as privileged information for
training learning-based methods. As an additional contribution,
we provide example scripts to procedurally generate URDF
models of simplified multi-linked tree-like objects that can
directly be added to the simulator for training learning-based
methods to navigate forest-like environments. These proce-
durally generated trees have configurable length, diameters
and branching factors, allowing the users to randomize the
generated meshes to learn collision avoidance in diverse sets
of environments.

IV. PARALLELIZED GEOMETRIC CONTROLLER ON SE(3)

We develop the parallelized controller on SE(3) based on
the work of [1]. The inertial reference frame is denoted as
E with basis vectors {e⃗1, e⃗2, e⃗3} and a body-fixed frame
B with basis vectors {⃗b1, b⃗2, b⃗3}. We additionally define
a vehicle frame V with the basis vectors {v⃗1, v⃗2, v⃗3}
that is yaw-aligned with the body-fixed frame, and having



the x − y plane parallel to the inertial frame. We define
m ∈ R the total mass
g ∈ R3 the gravity vector
ψ ∈ R the current yaw angle of the robot
ϕd ∈ R the reference roll angle
θd ∈ R the reference pitch angle
ψ̇d ∈ R the reference yaw rate
J ∈ R3×3 the inertia matrix with respect to the

body-fixed frame
R ∈ SO(3) the rotation matrix from the body-fixed

frame to the inertial frame
Rd ∈ SO(3) the rotation matrix from desired body-

fixed frame to the inertial frame
Ω ∈ R3 the angular velocity in the body-fixed

frame
Ωd ∈ R3 the desired angular velocity in the de-

sired body-fixed frame
v ∈ R3 the velocity vector of the center of mass

in the vehicle frame
vd ∈ R3 the desired velocity vector of the center

of mass in the vehicle frame
f ∈ R the total thrust magnitude along the

−b⃗3 axis
M ∈ R3 the total moment vector in the body-

fixed frame.
The position of the aerial robot is defined by the location

of the center of mass and the attitude is expressed with
respect to the inertial frame. Due to the underactuated nature
of quadrotors (and most other multirotor systems) asymptotic
output tracking of both attitude and position is not possible.
Two flight modes are detailed in this section. We consider
the control of the robot using either a) the attitude-controlled
flight mode or b) velocity-controlled flight mode, and provide
adapted controllers for the same.

A. Attitude-Controlled Flight Mode

To imitate widely available real-world control interfaces,
we consider ϕd, θd, ψ̇d and f as command inputs to the
attitude controller and calculate the desired body-fixed frame
orientation, Rd, and the desired angular velocity, Ωd, as below:

Rd = Rz(ψ)Ry(θd)Rx(ϕd) (1)

Ωd =

1 0 − sin θd
0 cosϕd sinϕd cos θd
0 − sinϕd cosϕd cos θd

 0
0

ψ̇d

 (2)

where Rj(η) (j = x, y, z) denotes the rotation matrix for a
rotation around the j-axis by η degrees. The attitude tracking
error eR ∈ R is expressed as:

eR =
1

2
(RT

dR−RTRd)
∨, (3)

where the vee map ∨ : so(3) → R3 maps skew-symmetric
matrices in R3. The angular velocity error eΩ ∈ R3 is
expressed as

eΩ = Ω−RTRdΩd. (4)

The nonlinear controller for the attitude-controlled flight mode
is defined as

M = −kReR − kΩeΩ +Ω× JΩ, (5)

where kR and kΩ are diagonal matrices with positive entries.
The final term from the corresponding equation in [1] is
dropped, similar to the implementation in [4].

B. Velocity-Controlled Flight Mode

Similarly, a nonlinear controller for the velocity-controlled
flight mode is utilized. An arbitrary velocity tracking command
Vvd ∈ R3 is given, with the desired yaw-rate ψ̇d. The
commanded acceleration vector can be calculated from the
velocity tracking error as:

ad = kv(vd − v), (6)

where kv is a diagonal matrix with positive entries. From this,
the total thrust and the commanded tilt angles can be deduced
as:

f = (ad +mg) · V b⃗3 (7)

ϕd = atan2(−ad,y,
√
a2d,x + a2d,z) (8)

θd = atan2(ad,x, ad,z), (9)

where ad,j (j = x, y, z) is the j−component of ad, and V b⃗3
is the transformed coordinates of b⃗3 in V . The reference tilt
angles and reference yaw rate can then be tracked by the
low-level attitude controller described above. The force f and
torque M are applied to the simulated rigid-body robot in
Isaac Gym using the underlying physics engine.

V. ASSET MANAGER

To robustly train navigation policies using exteroceptive
sensor data, environments containing obstacles and general
clutter need to be created. Since the Isaac Gym simulator [8]
provides tensor-level access to the position, orientation, and
linear/angular velocities of each object in the simulator, we
exploit this feature to build classes to easily modify each en-
vironment to randomize the obstacles. The simulator allows us
to separately consider each individual environment, where col-
lisions can be separated and masked between various entities.
However, modifying each obstacle in the environment can be a
cumbersome process. To avoid this, we develop a tensor-based
asset manager to easily configure, randomize and manipulate
the objects that are created in the simulator. Various objects are
categorized into user-defined classes (e.g., thin obstacles, large
trees, geometric shapes, etc.) based on their use case. Multiple
URDF files for each class are stored in a folder structure
named after the name of the associated class of objects. A
configuration file describes the number of obstacles from each
class to be created in each environment. The asset manager
randomly picks (with replacement) the required number of



Fig. 3. Examples of different environments configured. The top row shows
bounded environments, with the front, top, and left walls removed for
visualization. The bottom row shows different configurations for multiple
environments without walls.

URDF files separately for each environment. This allows the
user to populate a directory with a large number of models,
of obstacles with various types, shapes, and sizes, ensuring
that there is randomization across various environments. This
prevents learning methods from overfitting to specific types
of obstacles. The asset manager is also utilized when the
environments are reset as it samples a random position and
orientation for each obstacle in the environment that is to
be reset. The minimum and maximum bounds for the po-
sition can be set as a fraction of the environment bounds,
while the orientation bounds can be set as numerical values
corresponding to euler angles. The randomization in specific
dimensions can be prevented by assigning a constant value to
specific dimensions for chosen asset types. This allows placing
obstacles at predefined locations across environments. While
we provide only randomization for position and orientation for
static obstacles, extending it to dynamic obstacles is trivial.
The asset manager uses the NVIDIA Isaac Gym API and
provides an easier interface to easily add segmentation labels
to different classes of obstacles. Some examples of randomized
environments generated with the help of the asset manager are
shown in Figure 3.

VI. BENCHMARKS AND EVALUATION

To benchmark the performance of the simulator we sim-
ulate environments (without obstacles) with 217 robots and
command a set attitude or velocity. The parallelized simu-
lation, including that of the implemented controllers, allows
the Aerial Gym simulator to simulate an aggregate of over
3.8 × 106 steps per second, with each step corresponding to
10 ms of simulated time. Effectively, the data generated for the
robot simulation from the simulator is equivalent to obtaining
a speedup of 3.8 × 104 as compared to a real-time run on a
single robot. However, the addition of camera sensors restricts

the number of robots that can be used. The Isaac Gym API
also does not allow direct access to a consolidated camera
tensor leading to an overhead to read each image separately.
We simulate 210 robots with a depth camera with a resolution
of 270 × 480 pixels and can render a total of up to 1, 800
frames per second. Each of these tests was performed on a
workstation with 2× NVIDIA RTX 3090 GPUs and an AMD
Ryzen Threadripper PRO 3975WX CPU with 32-Cores.

VII. CONCLUSION

In this work, we presented the Aerial Gym simulator for
aerial robots, capable of parallelly simulating thousands of
flying robots. We adapted a nonlinear geometric controller
to work with parallelly simulated robots to provide high-
level interfaces that allow the imitation of real-world control
interfaces. Asset management functionality is packaged to
allow randomization of obstacles across environments and the
creation of custom user-defined obstacle classes for effective
handling of each kind of obstacle. Finally, we open-source
our simulator to enable the aerial robotics community to
leverage the benefit of parallelized simulation frameworks.
Future developments on this simulator includes the utilization
of alternate kernel-based ray-casting frameworks allowing a
rapid speedup in rendering depth images with a higher number
of robots. The software for the simulator is made available at
https://github.com/ntnu-arl/aerial gym simulator.

REFERENCES

[1] T. Lee, M. Leok, and N. H. McClamroch, “Control of complex maneu-
vers for a quadrotor uav using geometric methods on se(3),” 2011.

[2] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta,
and J. G. Araújo, “Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms,” Journal of Machine Learning
Research, vol. 23, no. 274, pp. 1–18, 2022. [Online]. Available:
http://jmlr.org/papers/v23/21-1342.html

[3] D. Makoviichuk and V. Makoviychuk, “rl-games: A high-performance
framework for reinforcement learning,” https://github.com/Denys88/rl
games, May 2021.

[4] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating
System (ROS): The Complete Reference (Volume 1). Cham: Springer
International Publishing, 2016, ch. RotorS—A Modular Gazebo
MAV Simulator Framework, pp. 595–625. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26054-923

[5] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[6] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics, 2017. [Online]. Available: https://arxiv.org/abs/1705.05065

[7] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conference on Robot
Learning, 2020.

[8] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
2021.

[9] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” 2022.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[11] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” in 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2015, pp. 6235–6240.

https://github.com/ntnu-arl/aerial_gym_simulator
http://jmlr.org/papers/v23/21-1342.html
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
http://dx.doi.org/10.1007/978-3-319-26054-923
https://arxiv.org/abs/1705.05065

	Introduction
	Related Work
	Simulator Design
	Parallelized Geometric Controller on SE(3)
	Attitude-Controlled Flight Mode
	Velocity-Controlled Flight Mode

	Asset Manager
	Benchmarks and Evaluation
	Conclusion
	References

