
CrazyChoir: A ROS 2 Toolbox for Simulations and Experiments
on Swarms of Cooperating Crazyflies

Lorenzo Pichierri, Andrea Testa, Giuseppe Notarstefano

Abstract— This abstract presents CRAZYCHOIR [1] , a
modular Python framework for distributed optimization and
control of Crazyflie swarms. CRAZYCHOIR is based on the
Robot Operating System (ROS) 2, allowing swarm algorithms
testing over Crazyflie nano-quadrotors in a virtual and real
experimental framework. Exploiting Python bindings of the
Crazyflie firmware, the toolbox runs realistic simulations on
Webots, a real-engine simulator. Moreover, CRAZYCHOIR pro-
vides a ROS 2 Python library to perform radio communication
with Crazyflies. The modular structure of the package frees
the user to design and implement novel control schemes and
planning algorithms, either for centralized or decentralized
strategies. Thus, the toolbox can be adopted to test and validate
online distributed optimization algorithms over swarms of
Crazyflies. CRAZYCHOIR is available at https://github.
com/OPT4SMART/crazychoir.

Index Terms— Distributed Robot Systems; Software Archi-
tecture for Robotics and Automation; Cooperating Robots;
Optimization and Optimal Control

I. INTRODUCTION

UAV swarm robotics has emerged as a promising field
of research, drawing particular attention from both academic
and industrial circles. This interest arises from their versatil-
ity and suitability for various applications, making them an
attractive option for a range of scenarios. In the last years, the
Crazyflie nano-quadrotor platform has gained a lot of atten-
tion among researchers. Recently, several efforts have been
put into the development of simulation and control toolboxes
based on the novel Robot Operating System (ROS) 2 [2].
However, the research community has provided few attention
to the development of ROS 2 toolboxes for the Crazyflie. In
this abstract, we present CRAZYCHOIR a ROS 2 package
to run realistic simulations and experiments on a swarm of
cooperating Crazyflie nano-quadrotors.

CRAZYCHOIR is tailored for swarms of cooperating
Crazyflie nano-quadrotors (Figure 1) , allowing the user
to perform simulations in a real-engine simulator (e.g.,
Webots [3]), and, therefore, experiments for fast prototyping.
Thanks to its modular structure, CRAZYCHOIR handles each
Crazyflie as a set of independent ROS 2 nodes, reducing the
failure rate subjected to single processes errors.

This work was supported in part by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 638992 - OPT4SMART) and in part by
the Italian Ministry of Foreign Affairs and International Cooperation (grant
No BR22GR01).

Authors are with the Department of Electrical, Elec-
tronic and Information Engineering, University of Bologna,
Bologna, Italy. {lorenzo.pichierri, a.testa,
giuseppe.notarstefano}@unibo.it.

Fig. 1. Snapshot of a swarm of Crazyflie nano-quadrotors in our testbed.

The package is integrated with Bitcraze firmware bindings,
which empower the realistic simulation directly implement-
ing onboard control functions.

Finally, CRAZYCHOIR offers support for the DIS-
ROPT [4] and CHOIRBOT [5] toolboxes, enabling users
to implement distributed optimization schemes and manage
inter-robot communications through ROS 2.

II. CRAZYCHOIR ARCHITECTURE

Exploiting the modular paradigm of ROS 2, CRAZY-
CHOIR instantiates a dedicated process (also known as
node) for each Crazyflie. Furthermore, all the programming
layers (e.g., simulator, controller, planner, and radio handler)
are organized in the same fashion. The package software
architecture consists of:
i) control layer,
ii) swarm planning layer,
iii) cooperative decision-making layer,
iv) radio communication layer,
v) realistic simulation layer.

A graphical illustration of the software architecture is de-
picted in Figure 2. Specifically, the control layer is de-
signed to implement off-board feedback-control schemes,
and, according to their needs, users can extend the exis-
tent classes. Then, the swarm planning and the cooperative
decision-making layer endow CRAZYCHOIR of distributed,
online optimization and control algorithms. These structures
compute the reference trajectories for each quadrotor of the
swarm. Once the control input is generated, it can be sent
via radio, or transmitted via ROS 2 topics to the simulators.
In fact, users can decide to simulate experiments using either
Webots or lightweight numerical integrations, visualized in
RVIZ. Also, CRAZYCHOIR is integrated with motion capture
systems, e.g., Vicon, which is exploited to retrieve the pose
of Crazyflies during experiments. Furthermore, to collect also

https://github.com/OPT4SMART/crazychoir
https://github.com/OPT4SMART/crazychoir

Fig. 2. CRAZYCHOIR architecture. Crazyflies can exchange information with neighbors to implement distributed feedback and optimization schemes.
Local classes handle planning and low-level control. Control inputs can be sent to simulation environments (Webots or RVIZ) or to real robots via radio.

linear and angular velocities, usually not provided by motion
capture systems, the package implements derivative and low-
pass filters.

III. CRAZYCHOIR TOOLKIT

A. Control Library

The toolbox provides a template Python class named
CrazyflieController, functional to implement the de-
sired control schemes for the Crazyflie. Moreover, CRAZY-
CHOIR already provides classical flatness-based control laws,
aiming at tracking a desired flat-output trajectory, e.g., po-
sition and yaw profiles with their derivatives. This control
scheme is implemented in HierarchicalController,
which extends the CrazyflieController template.
The attributes of this class are two Strategy classes
PositionControl and AttitudeControl.

B. Cooperative Decision-Making and Planning Strategies

The package provides a set of high-level functions to
perform decision-planning task. Also, CRAZYCHOIR allows
the implementation of cooperative decision-making and dis-
tributed feedback schemes on swarms of Crazyflies.

To facilitate the use of the package, CRAZYCHOIR pro-
vides a graphical user interface to hand-draw trajectories
and directly send them to the Crazyflie(s). Also, classical
operations needed during simulations/experiments are sup-
ported (e.g., hovering, landing, starting the experiment, etc.).
A snapshot of the interface is reported in Figure 3, where
we draw the name of our laboratory (i.e., Casy).

Point-to-point and smooth multi-spline trajectories are also
included in CRAZYCHOIR. Planning strategies are managed
by the TrajectoryHandler class. This class details the
topic on which the desired trajectory will be published.
Thereby, ROS 2 nodes can instantiate dynamically the appro-
priate publisher and subscribers. The class also defines the
trajectory message type and the respective callback function.

In CRAZYCHOIR, distributed optimization and control
schemes can be easily implemented by exploiting the com-
patibility with CHOIRBOT [5], a ROS 2 package for co-
operative robotics. Specifically, in these cooperative ap-

Fig. 3. Snapshot of the proposed GUI.

plications, each nano-quadrotor exchanges data with few
neighbors, possibly leveraging time-varying communica-
tion topologies. Thus, the swarm exploits local knowl-
edge of each quadrotor, leveraging inter-robot communi-
cations to achieve a global mission. Either static or time-
varying directed communication networks, are performed
by publisher-subscriber protocol. The classes CFGuidance
and CFDistributedFeedback are employed in CRAZY-
CHOIR to implement the aforementioned strategies.

C. Radio Communication

In this subsection, we present the physical communica-
tion functionalities that allow the user to send angular or
angular-rate setpoints to the Crazyflie. Usually, Crazyflies
communicate with a PC employing the Crazyradio PA, a
2.4 GHz USB radio dongle. To handle radio communica-
tion, CRAZYCHOIR provides a tailored RadioHandler
class, which instantiates an independent ROS 2 node for
each Crazyradio PA. Moreover, this method leverages the
official Crazyflie-lib-python developed by Bitcraze
to communicate with the swarm. Also, the use of official
library is exploited to retrieve onboard logging data, and,
hence, to provide logging features.

Following the modular paradigm, RadioHandler is ex-
tended by RadioHandlerFPQR, RadioHandlerFRPY,
and RadioHandlerXYZ. In particular, the first one sends

to the nano-quadrotors thrust and angular-rate setpoints,
leaving in charge the onboard controller to track this tra-
jectory. The second subclass dispatches thrust and angular
setpoints, and, finally, the third class assigns position set-
points to the higher level commander implemented
on the Crazyflie firmware A noteworthy fact is that the
communication of position setpoints can be performed with
a low communication rate (e.g., 10 Hz), which allows
for experiments with a significative number of Crazyflie
controlled by an online planner.

D. Simulative tools

In this section, the simulative functionalities of CRAZY-
CHOIR are explained. Initially, we describe the integration
of the package with Webots, a realistic simulator tailored
for robot simulations. Then, we present an alternative to this
method, a numerical simulation visualized in RVIZ.

The toolbox interacts with Webots through a specific
set of functions. Specifically, these functions, designed as
plugins, receive inputs, e.g., control inputs or waypoints
coordinates, from the higher-level classes (e.g., controller,
planner), mapping them into motor commands. The plugins,
written as Python classes, evaluate these command inputs
by leveraging Python bindings of the Crazyflie firmware
functions. This is a remarkable result of CRAZYCHOIR, in
fact, the designer can evaluate the realistic behavior of the
quadrotor. Also, the designer could leverage this feature to
test new firmware functions.

To implement simulations in the Webots environment, also
called World, the designer is asked to specify (i) the geometry
of the robot, (ii) external features (e.g. sensors and actuators),
and (iii) plugins to control the actuators. CRAZYCHOIR is
equipped with an exhaustive set of Webots plugins. The par-
ent class is named MotorCtrl which makes available GPS
measurements and IMU detections, as well as actuators and,
possibly, camera images. Also, initializations of ROS 2 pub-
lishers and subscribers are provided, which specify the link
between Webots and CRAZYCHOIR layers. The extended
subclasses are MotorCtrlFPQR and MotorCtrlXYZ,
which leverage functions of Python bindings of the Crazyflie
firmware.

To provide the possibility of simulating in additional,
external software, CRAZYCHOIR provides a numerical in-
tegrator. The Crazyflie dynamics is integrated through an
Explicit Runge-Kutta method, performed at 100 Hz. To
visualize the quadrotor motion, the toolbox is endowed with
a visualization utility based on RVIZ.

Thanks to the modular structure of the package, the user
can extend or modify the proposed features to simulate
more complex dynamics, such as the effect of rotor drag
or aerodynamic disturbances.

IV. CRAZYCHOIR HANDS-ON EXAMPLE:
BEARING-BASED FORMATION CONTROL

In this section, a bearing-based distributed formation con-
trol scheme (see [6]) is presented as a simulative and
experimental example.

Let us consider a team of N Crazyflies, split in Nl leaders
and N − Nl followers. The swarm has to deploy a desired
formation in the space, and, based on the leaders motion, the
controller has to steer the followers, adapting their position.
In this distributed framework, each quadrotor can exchange
data with a set Ni of neighboring quadrotors. The desired
formation is described by a set of bearings g⋆ij for all the
couples (i, j) with i ∈ {1, . . . , N} and j ∈ Ni. According
to [6], the control law is based on a double-integrator systems
in the form p̈dii = udi

i . Specifically, leaders apply udi
i = 0,

while followers implement the control law

udi
i = −

∑
j∈Ni

Pg⋆
ij
[kp(pi − pj) + kv(vi − vj)], (1)

where Pg⋆
ij

= I3 − g⋆ijg
⋆⊤
ij and I3 is the 3 × 3 identity

matrix. Notice that the resulting input cannot be directly sent
to Crazyflies, and, hence, we track this acceleration profile
using a flatness-based controller (cf. Section III-A).

The software implementation of this example relies
on three pillars: the Python class BearingFormation
for the control law implementation, the extended class
HierarchicalController to track the acceleration
profile, and, then, the simulative or experimental module.
The guidance node is implemented as follows:

guidance =
BearingFormation(update_frequency=freq,

pose_handler=’pubsub’,
pose_topic=’odom’)

rclpy.spin(guidance)

While, the control strategy is written as:

position_ctrl = FlatnessAccelerationCtrl()
attitude_ctrl = GeometryAttitudeCtrl()
sender = FPQRSender()
desired_acceleration = AccelerationTraj()

controller = HierarchicalController(
pos_strategy=position_ctrl,
attitude_strategy=attitude_ctrl,
command_sender=sender,
traj_handler=desired_acceleration)

rclpy.spin(controller)

To this end, for the RVIZ simulation, the user employs the
class CrazyflieIntegrator, to integrate the dynamics
of the Crazyflie, and, hence, the SimpleVisualizer to
visualize the quadrotor behavior in the RVIZ environment.
Instead, to run the Webots simulation, it is solely necessary to
substitute the integrator class with the Webots simulation ar-
chitecture. For this purpose, the user can employ the Webots
world described by crazyflie world.wbt and the plu-
gin MotorCtrlFPQR included in the crazyflie.urdf
file. An illustrative example of the Webots framework, in-
cluded in the ROS 2 launch file, is described by the following
lines of code:

def generate_launch_description():
... init settings

launch the Webots world
webots = WebotsLauncher(world=

’path_to/crazyflie_world.wbt’)
launch_description.append(webots)

for i in range(N): # for each quadrotor add
needed nodes

... set-up guidance node
... set-up control node

set-up webots node
crazyflie_driver = Node(

package=’webots_ros2_driver’,
executable=’driver’,
namespace=’cf_{}’.format(i),
additional_env={’WEBOTS_ROBOT_NAME’:

’cf_{}’.format(i)},
parameters=[{’robot_description’:

robot_description}]
)
launch_description.append(crazyflie_driver)

... set-up robot state publisher node
return LaunchDescription(launch_description)

Moreover, to highlight the Webots functionalities, we
increase the number of Crazyflie to 30, and, hence, we
change the desired formation, modeling the bearings to draw
a grid. Snapshots from the Webots simulation are depicted
in Figure 4.

Fig. 4. Begin of the simulation (left) and end of the simulation (right) of
the bearing formation control problem in Webots.

A. Running the Experiment

A notable contribution of CRAZYCHOIR is the possibility
to execute experiments simply by changing only a few lines
of code. Specifically, the user needs to include the radio
nodes in the launch file, pointing out the Crazyflie URIs.
Then, the ros2-vicon-receiver package 1 has to be
launched, which allows the communication with the Vicon,
and results essential to retrieve the pose of the quadrotors.
Snapshots from an experiment 2 with 4 Crazyflies are pro-
vided in Figure 5.

t = 0 t = 1 t = 2 t = 3

Fig. 5. Snapshots from an experiment at different time instants. Leaders
are circled in red, followers in blue.

1https://github.com/OPT4SMART/ros2-vicon-receiver
2The video is also available at https://youtu.be/mJ1HOquR-vE

It is worth noticing that, thanks to the modular structure
supported by ROS 2, if we lose control of one or more
Crazyflies the experiment continues to run. This result en-
hances the potential of the decentralized framework, increas-
ing the swarm robustness and lowering the risk of failure.

V. CONCLUSIONS

In this abstract, we presented CRAZYCHOIR, a ROS 2
package tailored for swarms of Crazyflie. The toolbox allows
the user to perform Webots simulations and experiments
of Crazyflie swarms, leveraging firmware bindings. Also,
the package provides a set of libraries to communicate via
radio dongles with nano-quadrotors. CRAZYCHOIR includes
several template classes to perform cooperative decision-
making, planning, and control Finally, users can conveniently
extend the toolbox by implementing their own algorithms. To
assess the potential of CRAZYCHOIR, descriptive simulations
and experiments have been provided.

REFERENCES

[1] L. Pichierri, A. Testa, and G. Notarstefano, “Crazychoir: Flying swarms
of crazyflie quadrotors in ros 2,” arXiv preprint:2302.00716, 2023.

[2] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022.

[3] O. Michel, “Cyberbotics ltd. webots™: professional mobile robot
simulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, p. 5, 2004.

[4] F. Farina, A. Camisa, A. Testa, I. Notarnicola, and G. Notarstefano,
“Disropt: a python framework for distributed optimization,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 2666–2671, 2020.

[5] A. Testa, A. Camisa, and G. Notarstefano, “ChoiRbot: A ROS 2 toolbox
for cooperative robotics,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 2714–2720, 2021.

[6] S. Zhao and D. Zelazo, “Translational and scaling formation maneuver
control via a bearing-based approach,” IEEE Transactions on Control
of Network Systems, vol. 4, no. 3, pp. 429–438, 2017.

https://github.com/OPT4SMART/ros2-vicon-receiver
https://youtu.be/mJ1HOquR-vE

	Introduction
	CrazyChoir Architecture
	CrazyChoir Toolkit
	Control Library
	Cooperative Decision-Making and Planning Strategies
	Radio Communication
	Simulative tools

	CrazyChoir Hands-on Example: Bearing-Based Formation Control
	Running the Experiment

	Conclusions
	References

