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Abstract— Aerial vehicle testing can be highly inefficient and
often costly due to the high propensity for crashes that is
inherent with a flying object. This adds significant complexity
to aerial vehicle research. Evaluating new control algorithms on
hardware can be dangerous, costly, and ecologically unfriendly,
due to the frequent replacement of components that break
in a crash. Thus, high-fidelity simulators are a necessity and
can expedite the development of novel controllers and control
techniques. This paper looks to analyze existing aerial vehicle
simulators and the decision factors that go into selecting a sim-
ulator. Additionally, we include a discussion of the integration
of a simulator we are using for aerial grasping research and
the advantages and disadvantages of our chosen simulator.

I. INTRODUCTION

Uncrewed Aerial Vehicles (UAVs) are being widely
adopted for a variety of use cases and industries, such as
for agriculture, inspection, mapping, and search and rescue.
In particular, aerial manipulation applications have been on
the rise, as discussed in [1], such as for parcel delivery,
warehouse management, and sample collection.

Testing experimental algorithms directly on hardware can
be highly dangerous as unexpected behaviors arise. Fur-
thermore, crashes can be costly, detrimental to development
timelines, and harmful to the environment due to the waste
created from frequent replacement of vehicle components
that break in crashes. Additionally, with the rise of Machine
Learning (ML) based techniques, collecting data on hardware
can be highly inefficient and often impractical. Thus, a
strong robotic simulator for UAVs can be essential for rapid
development and progression of the field.

In this work, we analyze some of the prominent UAV
simulators and key selection criteria and decision factors
to consider when selecting a simulator. Furthermore, we
describe our selection process and integration of a simulator
we are using for aerial grasping research. Fig. 1 shows our
aerial grasping research platform in flight both in simulation
and on hardware grasping a target object.

II. AERIAL VEHICLE SIMULATORS

Many options for physics-based simulators have arisen
for the field of robotics as a whole as well as specific to
aerial vehicles, all with unique advantages and disadvantages.
Additionally, as the field evolves the latest innovations in
simulators are constantly developing. Such a large set of
options and frequent innovations ultimately makes selecting
a simulator that is best suited for a particular researcher’s
application very challenging.
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(a) Gazebo simulation
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Fig. 1. Autonomous aerial platform in flight grasping a target object.

A. Survey of Aerial Vehicle Robotics Simulators

The survey in [2] reviews a wide selection of physics
simulators for robotic applications. The authors analyze
many different application spaces, such as soft robotics,
medical robotics, manipulation, legged locomotion, underwa-
ter vehicles, and aerial vehicles. The authors present tables
comparing features for many different domains. For aerial
robots, the following simulators are compared: AirSim [3],
Flightmare [4], Gazebo [5], and Webots [6].

The authors in [7] provide a comparison of four simulators
that are commonly used across many domains: Gazebo [5],
MuJoCo [8], PyBullet [9], and Webots [6]. Specifically, the
authors analyze these simulators with respect to stability,
speed, and hardware utilization for reinforcement learning
(RL) applications. They discuss the trade-off between real-
time factor and precision; the simulation speed can be
increased by increasing the simulation time step, however
this directly reduces the resulting precision. Additionally,
the authors analyze the ease of adopting each simulator by
discussing the challenges users may encounter when first
interfacing with the software.

Unfortunatley, not every simulator has easy integration for
aerial vehicles. The dynamics considerations for a manipula-



tor or ground vehicle can vary significantly compared to an
aerial vehicle, in particular for research that hopes to consider
aerodynamic effects. The authors in [10] analyze a broad
spectrum of considerations for aerial delivery vehicles, in-
cluding the selection of simulators. The authors compare the
following simulation packages: RotorS [11] (which is built
on Gazebo), AirSim [3], Flightmare [4], FlightGoggles [12],
and Gym-pybullet-drones [13] (which is built on PyBullet).
Similarly, the authors in [14] analyze aerial vehicle specific
simulators, including many less frequented simulators, and
discuss some simulator selection criteria.

Also of note are extensions to widely used simulators, such
as PRL4AirSim [15] which is a package built on AirSim for
efficient parallel training for RL applications.

B. Aerial Vehicle Simulator Selection Criteria

The primary factor to consider when selecting a simulator
is often the intended application space and which simulators
have the features and sensors required for that application
space. In most cases, the perfect simulator, that encompasses
all desired criteria for a particular project, does not exist. This
is often the impetus for the development of new simulators.

From our experience and the works we have cited, we
have compiled a list of selection criteria and decision factors
that are frequently considered when comparing aerial vehicle
simulators. These comparison points are expressed in Table I.

TABLE I
SELECTION CRITERIA FOR AERIAL VEHICLE SIMULATORS

Criteria Decision Factors

Physics Engine Required fidelity for the intended use case

Visual Fidelity If realistic images are necessary, such as for
computer vision or machine learning

ROS Integration For compatibility with existing software in-
frastructure

RL API Ease of integration for RL applications

Autopilots Compatibility with common autopilots, e.g.
PX4 and ArduPilot, such as for software-in-
the-loop (SITL) testing

HITL Infrastructure for performing hardware-in-
the-loop (HITL) testing

Multiple Vehicles Support for simulating multiple vehicles

Sensors Integration with common sensors, such as
cameras (RGB and RGBD), IMU, Magne-
tometer, GPS, barometer, LIDAR, and opti-
cal flow sensors

UAV Models Support of common UAV models and ease
of integrating new models

Simulation Speed Real-time speed and ability to run in super
real-time, such as for learning applications

Integration Ease of getting started and development
with the software

C. Comparison of Aerial Simulators

Using information compiled from [2], [10], and the respec-
tive documentation for each simulator, we present Tables II
and III for comparing aerial vehicle simulators using some
of the selection criteria we discussed in Table I. We include

in Tables II and III the most widely used aerial vehicle
simulators. Not included in this analysis, but also worth
noting, as mentioned in [10], are: jMAVSim [16], JSBSim
[17], and the UAV Toolbox in Matlab [18].

Table II compares some of the notable features of the sim-
ulation environments. For brevity we label the four physics
engines supported by Gazebo (i.e. ODE, Bullet, DART, and
Simbody) as “GazeboPhys”. Table III compares sensors that
are supported by each simulator.

D. Applications of Aerial Simulators

It is valuable to analyze applications of aerial simulators
to see how they have been utilized in the past. Flightmare
is extensively used for learning applications, such as for
autonomous drone racing [19], and outdoor high-speed flight
[20]. In [20], the authors use Flightmare with the RotorS
Gazebo plugin, for physics modeling, and Unity, for render-
ing. In [21], Gazebo with RotorS is used for training policies
for drone acrobatics.

AirSim is used in [22] for obstacle avoidance with drones
using deep RL and in [23] for autonomous drone racing.
The authors in [23] note that they selected AirSim due
to AirSim’s debugging API and support of more sensors
and control modes compared to other simulators such as
Flightmare and FlightGoggles. Additionally, they note Air-
Sim’s detailed documentation and the ease of changing the
environment for building unique drone racing tacks.

The authors of [24] use PyBullet, as in the library gym-
pybullet-drones, in their work for zero-shot policy transfer
of quadrotors.

E. Specialized Simulators

Many simulators can generalize across a wide-variety of
use cases. However, there will always be application spaces
that do not fit within the bounds of existing simulators and
require the development of specialized software. We have
included a couple such examples here for reference.

The Agilicious open-source and open-hardware platform
for vision-based agile flight [25] introduces a specialized
simulator to model varying levels of fidelity of the quadro-
tor dynamics. However, the Agilicious software stack also
includes interfaces to RotorS and Flightmare.

The field of aerial manipulation is rapidly growing [1],
though few simulators specific to these types of applica-
tions have arisen. In [26], the authors report RotorTM, a
new simulator for aerial transportation and manipulation.
In particular, they investigate simulating cable-suspended
loads and passive connection mechanisms between multiple
vehicles. These equipping mechanisms are not modeled in
other common simulators.

III. AERIAL GRASPING SIMULATOR SELECTION
AND INTEGRATION

We assessed the aerial vehicle simulators from Tables II
and III for aerial grasping research. We aimed to simulate a
system that can autonomously detect a target object, navigate
to that object and grasp it and then detect a destination and
place the object, all in an unknown environment.



TABLE II
COMPARISON OF FEATURES FOR WIDELY USED AERIAL VEHICLE SIMULATORS: INCLUDED (✓) AND NOT INCLUDED (✗)

Simulator Physics Engine Rendering Visual
Fidelity ROS RL

API PX4 ArduPilot HITL Multiple
Vehicles Ref.

Gazebo GazeboPhys OpenGL Low ✓ ✓ ✓ ✓ ✓ ✓ [5]
AirSim Fast Physics / PhysX Unreal, Unity High ✓ ✓ ✓ ✓ ✓ ✓ [3]

Flightmare Ad hoc, GazeboPhys Unity High ✓ ✓ ✗ ✗ ✗ ✓ [4]
Webots ODE OpenGL Low ✓ ✓ ✗ ✓ ✗ ✓ [6]
RotorS GazeboPhys OpenGL Low ✓ ✗ ✗ ✗ ✓ ✗ [11]

FlightGoggles Ad hoc Unity3D High ✓ ✗ ✗ ✗ ✓ ✗ [12]
Gym-pybullet-drones PyBullet OpenGL Low ✓ ✓ ✗ ✗ ✗ ✓ [13]

TABLE III
COMPARISON OF INCLUDED SENSORS FOR WIDELY USED AERIAL VEHICLE SIMULATORS: INCLUDED (✓) AND NOT INCLUDED (✗)

Simulator RGB Depth Seg. Point Cloud IMU Mag. GPS Barometer LIDAR Optical Flow Ref.

Gazebo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ [5]
AirSim ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ [3]

Flightmare ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ [4]
Webots ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ [6]
RotorS ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ [11]

FlightGoggles ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ [12]
Gym-pybullet-drones ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ [13]

A. Aerial Grasping Simulator Selection

One of our highest priorities when selecting a simulator
was the ability to seamlessly swap between the simulation
and hardware vehicle for rapid testing and prototyping of
algorithms. Thus, we wanted a simulator that had integration
with our intended flight controller, PX4. This would enable
running our full software stack in simulation for integration
of new features, testing functionality, and debugging. Then
when we were ready, and confident in our algorithms,
we could run the same software stack on the physical
hardware platform. PX4 highly recommends Gazebo for
SITL simulation. Our other priorities were a strong physics
engine (and handling of collisions), ease of integration, and
available sensors, which were also satisfied by Gazebo. Thus,
we decided to use Gazebo with PX4’s SITL simulation
architecture as a starting point.

B. Aerial Grasping Gazebo Integration

For our research, we are using a modified Uvify IFO-
SX quadrotor with a custom collision tolerant carbon fiber
foam cage and modular gripper extension package, as seen
in Fig. 1. We modeled our vehicle in SolidWorks and then
exported an Unified Robotics Description Format (URDF)
file using the SolidWorks to URDF exporter [27]. We then
converted this file to a Gazebo SDF model. Ultimately this
allowed us to have accurate collision geometries and form-
factors in our simulation.

We created a plugin for our simulated gripper that matches
the software interface of our hardware gripper. Then we built
a simulated environment similar to our real-world testing area

Fig. 2. Gazebo simulation.

and imported models for
our target objects.

Fig. 2 shows our aerial
grasping research platform
in our Gazebo simulation.
The vehicle is positioned
in front of a target object
on the table. Projected from
the vehicle’s RGB camera
is an image of the simu-
lated camera’s view.

1) Advantages: Our
simulation was essential
for integrating and tuning
our controller with the
PX4 software stack. It
allowed us to evaluate performance and debug issues rapidly
and then run the same software seamlessly on the hardware
vehicle. Additionally, after tuning our controller gains
in the simulated environment, we found that only minor
adjustments were required on the real vehicle. Ultimately,
this dramatically reduced hardware testing time. Overall, the
shift from simulation to hardware for our control algorithms
was highly efficient and allowed us to quickly replicate our
simulation results, as seen in Fig. 1.

2) Disadvantages: The images generated in our Gazebo
simulation environment have low visual fidelity and the envi-
ronments have minimal visual features, as seen in Fig. 3(a).
This ended up being prohibitive to running visual odometry
and object detection in our simulated environment, including



(a) Gazebo simulation (b) Flightmare simulation

Fig. 3. Toy can in Gazebo and Flightmare simulation environments. DOPE
detection, in the Flightmare simulation, indicated by green bounding box.

when more textures were added to the environment. Ulti-
mately, this necessitated using alternative methods for odom-
etry and AR tags for object detection in the simulation, which
is contrary to our goal of running identical software stacks in
simulation and hardware. Furthermore, as our research moves
towards vision and learning based methods, we will require
higher fidelity rendering. For example, Fig. 3(b) shows an
object being detected in the Flightmare simulator using Deep
Object Pose Estimation (DOPE) from [28]. The comparable
image in our Gazebo simulation, Fig. 3(a), did not yield
detections when running DOPE. Moving forward, requiring
higher visual fidelity may motivate switching simulators or
integrating with a second simulator for different use cases.

IV. CONCLUSION

Selecting a simulator that is best for a particular appli-
cation space can be very challenging, but rewarding when
it increases safety and reduces testing time and cost. In this
work, we discussed some of the prominent robotic simulators
for aerial vehicles. We enumerate possible decision factors to
consider when selecting a simulator and we compare features
and integrated sensors across many widely used simulation
packages. Pertaining to our recent aerial grasping research,
we discussed our considerations when selecting a simulator
and our software integration. Finally, we detailed the main
advantages and disadvantages of our selected simulator,
specific to our research. We hope that this analysis will be
valuable to the community when embarking on aerial vehicle
research and selecting a simulation environment.
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