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A Spectrum of Real-World Robot Applications
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UWB for Portable and Reliable Indoor Localization

Accurate, robust, and scalable indoor o
localization is a crucial enabling technology for ' |
many robot applications

* warehouse management

* industrial inspection

* |ong-term monitoring tasks

Ultra-wideband (UWB) radio technology, with
its ability to provide high-accuracy time of
arrival (TOA) measurements, has emerged as
a promising indoor positioning solution.




Two Modes of Operation

Two-Way Ranging (TWR) Time Difference of Arrival (TDOA)
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UWB tag communicates with anchors and UWB tags receive signals from anchors
acquires range measurements through two- passively and compute the difference in
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Challenges Hindering Reliable Localization
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Uncertainty-Aware Gaussian Mixture Model for UWB Time Difference of Arrival Localization in Cluttered Environments



Limitations of Existing Methods
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Limitations of Existing Methods
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Methodology

We apply a similar variational inference approach, originally used in motion segmentation, to
incorporate the residuals’ uncertainties into the GMM noise model learning. The variational
distributions of the hyperparameters are computed through maximizing the evidence lower bound.

The key insight of this approach is to incorporate the residuals” uncertainties when evaluating the
responsibilities in the variational E step.

W. Zhao, A. Goudar, M. Tang, X. Qiao, and A. P. Schoellig 10

Uncertainty-Aware Gaussian Mixture Model for UWB Time Difference of Arrival Localization in Cluttered Environments



Methodology

We propose a bi-level optimization
algorithm for joint localization and
uncertainty-aware noise model learning
* |nnerloop
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Uncertainty-Aware GMM

Our proposed method still achieves an average
of 18.49 cm localization accuracy, leading to
19.11% error reductions compared to
conventional GMM approach.
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Range-Visual-Inertial-Aided Localization and Navigation

Further fusing UWB and VIO for localization
achieves higher accuracy in cluttered
environments with off-the-shelf sensors.
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Online Spatio-Temporal Calibration

e Accurate positioning requires multi-modal sensor

fusion and calibration of position and time offsets. *

e Sensors are generally not collocated
e Sensors have different latencies

v Pu oy Rigid body
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* Temporal and spatial offsets can be calibrated online

as long as the required identifiability and observability

conditions are met.
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Multiagent Relative Localization and Pose

Estimation

* Localization multiple aerial robots by measuring

inter-robot distance.
 Use multiple UWB tags to estimate initial pose

and trajectory.

A. Goudar, F. Diumbgen, T. D. Barfoot, and A. P. Schoellig

Optimal Initialization Strategies for Range-Only Trajectory Estimation
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UWB-Based Localization for Aerial Swarms

Part |
Robust Range-Based Methods
. for. « UWB for portable and reliable indoor localization
Reliable Aerial Swarm . . .

Localization e Uncertainty-aware GMM model learning algorithm for

) improved localization performance in cluttered scenes

T * Fusing VIO and spatio-temporal calibrations further reduce
localization errors
* Scaling to multiagent systems
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F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Dance of the Flying Machines” | Video


https://youtu.be/NRL_1ozDQCA?si=MrpwBvNS2D3SNOFI

Trajectory of Aerial Swarm Research from the Lab

Prior Work: Primitive-based motion planning
frameworks for “dancing to the music,” where
motion parameters are designed by experts

Schoellig, Angela P., et al. "So you
think you can dance? Rhythmic flight

performances with Du, Xintong, et al. "Fast and in sync:
quadrocopters." Controls and Art: Periodic swarm patterns for v
Inquiries at the Intersection of the quadrotors.” IEEE International Idea: Use |arge Ianguage model (|_|_|\/|) to
Subjective and the Objective (2014): Conference on Robotics and o _
73-105. [pdf, website] Automation (ICRA). IEEE, 2019. [pdf] facilitate choreography design through language
t .
M. Schuck, B. Sprenger, A. Jiao, T. P. Patel, S. Khurana, A. Korol, L. Brunke, V. K. Adajania, U. Culha, S. Zhou, and A. P. Schoellig 19

Swarm-GPT: Combining Large Language Models with Safe Motion Planning for Robot Choreography Design


https://arxiv.org/pdf/1809.04230.pdf
https://arxiv.org/pdf/1909.05150.pdf
https://arxiv.org/pdf/2303.04856.pdf
https://www.dynsyslab.org/wp-content/papercite-data/pdf/schoellig-springer14.pdf
https://idsc.ethz.ch/research-dandrea/research-projects/archive/music-in-motion--as-of-2012-.html
https://arxiv.org/pdf/1810.03572.pdf
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Pro: Interpretating qualitative instructions
and allowing specifications of behaviors
through intuitive instructions

Con: Difficult to guarantee feasibility and
safety of generated choreographies
(especially for large swarms)

v
Safety Filter: Encode prior knowledge via
optimization-based trajectory generation
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Swarm-GPT: Combining Large Language Models with Safe Motion Planning for Robot Choreography Design
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Trajectory of Aerial Swarm Research from the Lab

Schoellig, Angela P., et al. "So you
think you can dance? Rhythmic flight
performances with

guadrocopters." Controls and Art:
Inquiries at the Intersection of the
Subjective and the Objective (2014):
73-105. [pdf, website]

SN
SN

Du, Xintong, et al. "Fast and in sync:
Periodic swarm patterns for
quadrotors.” IEEE International
Conference on Robotics and
Automation (ICRA). IEEE, 2019. [pdf]

Safety Filter: Distributed optimization problems for
individual agents to account for actuation constraints,

smoothness, and motion of other agents

v

Luis, Carlos E., and Angela P.
Schoellig. "Trajectory generation for
multiagent point-to-point transitions
via distributed model predictive
control." IEEE Robotics and
Automation Letters 4.2 (2019): 375-
382. [pdf]

Luis, Carlos E., Marijan Vukosavljev,
and Angela P. Schoellig. "Online
trajectory generation with distributed
model predictive control for multi-
robot motion planning." IEEE
Robotics and Automation Letters 5.2
(2020): 604-611. [pdf]

Adajania, Vivek K., et al. "AMSwarm: An
Alternating Minimization Approach for Safe
Motion Planning of Quadrotor Swarms in
Cluttered Environments.” IEEE
International Conference on Robotics and
Automation (ICRA), 2023. [pdf]

M. Schuck, B. Sprenger, A. Jiao, T. P. Patel, S. Khurana, A. Korol, L. Brunke, V. K. Adajania, U. Culha, S. Zhou, and A. P. Schoellig

Swarm-GPT: Combining Large Language Models with Safe Motion Planning for Robot Choreography Design
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AMSwarm Safety Filter: lllustration
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V. K. Adajania, S. Zhou, A. K. Singh, and A. P. Schoellig

AMSwarm: An Alternating Minimization Approach for Safe Motion Planning of Quadrotor Swarms in Cluttered Environments
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Swarm-GPT: An Interactive Choreography Interface

accounts for
generates creative kinematic and
motions matching music safety constraints
features and interpret
language inputs
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file times & way- frajectory ,
features A points :
| . Real System
reprompits (e.g., | |
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visualisation of robot performance
in simulation or experiment

M. Schuck, B. Sprenger, A. Jiao, T. P. Patel, S. Khurana, A. Korol, L. Brunke, V. K. Adajania, U. Culha, S. Zhou, and A. P. Schoellig
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Swarm-GPT: Results
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“Here Comes the Sun”



Safe and Intuitive Multiagent Motion Planning

Efficient Swarm Coordination

;_:%-(

Part Il
Control Theoretic Approaches

for

- ¥

E

=2
A

Leveraging our prior knowledge optimization-based

methods for safe multiagent motion planning
Incorporating language models for intuitive interactions

Seamlessly combining the two gives non-experts the ability
to program robots

26



Talk Overview

Part Ili
Simulation Tools and Datasets
for
Scaling Up Swarming Tasks
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UTIL Dataset: Overview

Designed a variety of identification
experiments in line-of-sight (LOS) and non-
line-of-sight (NLOS) scenarios

Two UWB anchors and one Crazyflie nano-
quadrotor equipped with an UWB tag are

placed on wooden structures ® ) oot o e
A millimeter-level accurate motion capture
system measures the poses of the tag and ]

the anchors for ground truth data

https://utiasdsl.github.io/util-uwb-dataset/

Probability Density

=1.0 —0.5 0.0 0.5 1.0
NLOS error [m]

W. Zhao, A. Goudar, X. Qiao, and A. P. Schoellig

UTIL: An Ultra-wideband Time Difference of Arrival Indoor Localization Dataset

28



UTIL Dataset: Optimizing Sensor Placement

NLOS experiments

Modeling and optimizing
sensor placements can
significantly reduce the
variance of range
measurements

RMSE error can be reduced
up to 76% in 3D settings

<

(2 xl

311 @ Trivial #1 o

(b)

Trivial #2

Finding the Right Place: Sensor Placement for UWB Time Difference of Arrival Localization in Cluttered Indoor Environments

W. Zhao, A. Goudar, X. Qiao, and A. P. Schoellig

29



gym-pybullet-drones

An open-source environment for the reinforcement Design Principles:
learning of single and multi-agent quadcopter control * Flexibility (multiple use cases in one Python pkg)

* Ease-of-use (low-friction installation and 15t use)
Based on the widely available and open-source S

: : N

Bitcraze Crazyflie hardware and software stack Integrations: .

e PyBullet Physics :

Y i & Gymnasium

 Farama Found. Gymnasium

 DLR Stable-baselines3 2.0

* Betaflight SITL

« CFFirmware (WIP) LR
% FLIGHT

[ gym-pybullet-drones | Public

PyBullet Gym environments for single and multi-agent reinforcement
learning of quadcopter control

@ Python Y5929 % 280

J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig

Learning to Fly---a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control
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gym-pybullet-drones

Installation Reinforcement learning examples (SB3's PPO)

Tested on Intel x64/Ubuntu 22.04 and Apple Silicon/macOS 14.1. cd gym_pybullet drones/examples/ 3

python learn.py # task: single drone hover at z == 1.0

git clone https://github.com/utiasDSL/gym-pybullet-drones.git 0 python learn.py —--multiagent true # task: 2-drone hover at z == 1.2 and 0.7

cd gym-pybullet-drones/

Bt Fhepibod [ amplilli oot Llbng Opeiaiil 15 [bngl] Reldas badd |

Wl iy i Opesfit e [Dog] Bblaans bosda

conda create -n drones python=3.10
conda activate drones

pip3 install —-upgrade pip
pip3 install -e . # if needed, “sudo apt install build-essential’® to install ‘gcc’ and builc

PID control examples

cd gym_pybullet_drones/examples/ >
python3 pid.py # position and velocity reference
python3 pid_velocity.py # desired velocity reference

e e e TR e T TR —— e e e e e Tt e T T e TEa

Bodat bt Dnampdblicarid vise] Cpeeslil Lr (D] Bded s badd Badnt Frryakoh [ aasapbilnoerd wibs] OpdesOil Br [Dogl] Bdbd s budd

Beitgl] Prrpyiny Lo smplpBrpenpye pryieg SpeeGL 1 e [Bgd] Brina s budd Budidr Frepakia Crmiy’ Leiaie] Cprinlit 1v B3] Bt iaa bl
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J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig

Learning to Fly---a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control 31



safe-control-gym: a Unified Benchmark Suite

C O m p 0 n e n tS ‘ Google parent Alpget launches Intrinsiccanew *
- company to bUI|d software for industrial robots

PHYSICS LIBRARY

* Open-source physics-engine Bullet

| N | Mind log > Opsningupaphysios simul Dee Mind
* Compatibility with OpenAl Gym - O,ﬁngu,,apﬁsics

nnnnn simulator for robotics

e CasADi as a symbolic framework

* YAML-based configuration system @OpenAI @
* For portability and reproducibility
° ./. [ |
Test Environments /i\) CasADi

* Three environments (cartpole, 1D
quadrotor, and 2D quadrotor) :

* Two tasks (stabilization and trajectory

tracking) with increasing difficulty m

Z. Yuan, A. W. Hall, S. Zhou, L. Brunke, M. Greeff, J. Panerati, and A. P. Schoellig

safe-control-gym: a Unified Benchmark Suite for Safe Learning-based Control and Reinforcement Learning in Robotics 32



safe-control-gym: a Unified Benchmark Suite

safe-control-gym Related Discussions
https://github.com/utiasDSL/safe-control-gym (from Recent Workshops)
gym architecture Software Architecture symbolic prior dynamics, cost,
l and constraints
controller safe-control-gym environment | Safety Definitions and
( ) * e [ models .reset () constraints| | B ) Requirements for Real-World
cost, co;stra.ints’ . ] . Randomize » . . -ur H M
Learmng task_reference ¢ CasADi Shb&rgggllslc Ineg:lialpri';::ﬂes B & CasADi Sl\)&l'cl;l(]i)e()llslc < Robot Appl |Cat|0ns
A priori Dynamics PER— State Constraints Description
Cost Function < = Task Reference I Input Constraints \_ )
Control: /_______ftii____\_* . Step () A 4 7 ™
« LOQR, .. In t . o, o
Lo b Cone fem Diswroances |7| (& P]?l‘;gss S— (optional) Opportunities and Challenges
. - - [} - < Ad 1al 3 o .
Reinforcement Learning: obs, reward, done Estimation . . O ~ Disturbances versaria In DeVEIOpIng RObOt Lea rnlng
. PPO, SAC, .. Cinfor Disturbances |1 Simulation |/ Agent .
L ) et | I , Algorithms
LQR GP-MPC Robust Adversarial RL

Benchmark, Challenges,

Iterative LQR Soft Actor Critic MPC Safety Filter Evaluation to Bridge the Gap
Between Theory and Practice

Linear MPC Proximal Policy Optimization Control Barrier Certification

Z. Yuan, A. W. Hall, S. Zhou, L. Brunke, M. Greeff, J. Panerati, and A. P. Schoellig

safe-control-gym: a Unified Benchmark Suite for Safe Learning-based Control and Reinforcement Learning in Robotics
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safe-control-gym: a Unified Benchmark Suite

3 Environments

e (a3 rtpole -1 safe-control-gym ( Public
° 1D Quad rotor PyBullet CartPole and Quadrotor environments—with CasADi symbolic a
e 2D Quad rotor priori dynamics—for learning-based control and RL

@ Python w445 % 96
2 Tasks (for each system)

* Stabilization to fixed points Repo: https://github.com/utiasDSL/safe-control-gym
* Tracking given trajectories
10+ Implemented Algorithms Related Publications (- equal contribution)
o PID [1] L. Brunke®*, M. Greeff*, A. W. Hall*, Z. Yuan*, S. Zhou?*, J. Panerati, and A. P. Schoellig,
] ] “Safe learning in robotics: From learning-based control to safe reinforcement learning,”
° Linear Quad ratic Regu IatOr (LQR) Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, 2021. [pdf]
¢ I\/Iodel-predictive control (|V| PC) [2] Z. Yuan, A. W. Hall, S. Zhou, L. Brunke, M. Greeff, J. Panerati, and A. P. Schoellig, "Safe-
° control-Gym: A unified benchmark suite for safe learning-based control and reinforcement
RL agents (PPO’ SAC) learning in robotics," IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11142-
° your algortthwm... 11149, 2022. [pdf]

Z. Yuan, A. W. Hall, S. Zhou, L. Brunke, M. Greeff, J. Panerati, and A. P. Schoellig

safe-control-gym: a Unified Benchmark Suite for Safe Learning-based Control and Reinforcement Learning in Robotics
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https://arxiv.org/pdf/2109.06325.pdf
https://arxiv.org/pdf/2108.06266.pdf

IROS Safe Robot Learning Competition and Beyond

Objective: design a controller/planner for a D
Crazyflie 2.x quadrotor to safely slalom through o\
a set of gates and reach a target

Challenge: uncertainties in the robot dynamics
(e.g., mass and inertia) and the environment
(e.g., wind, position of the gates).

Participants were encouraged to explore both
control and reinforcement learning approaches [1] Teetaert S, Zhao W, Xinyuan N, Zahir H, Leong H,
(e.g., robust, adaptive, predictive, learning- Hidalgo M, Puga G, Lorente T, Espinosa N, Carrasco JA,

based and optimal control and model- Zhang K. A Remote Sim2real Aerial Competition: Fostering
’ Reproducibility and Solutions' Diversity in Robotics

based/model-free RL). Challenges. arXiv preprint arXiv:2308.16743. 2023 Aug 31.

IROS Competition Code Base | https://github.com/utiasDSL/safe-control-gym/tree/beta-iros-competition
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https://github.com/utiasDSL/safe-control-gym/tree/beta-iros-competition

IROS Safe Robot Learning Competition and Beyond

Evaluation Scenario  Constraints  Rand. Inertial Properties = Randomized Obstacles, Gates  Rand. Between Episodes  Notes
level C Yes No No No Perfect knowledge
level 1 Yes Yes No No Adaptive
level 2 Yes Yes Yes No Learning, re-planning
level 3 Yes Yes Yes Yes Robustness
sim2real Yes Real-life hardware Yes, injected No Sim2real transfer

A 4
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A World of Abundant Data

Part Il
Simulation Tools and Datasets . 7| dataset facilitating reliable estimation algorithm design

for . .
. . in real-world cluttered environments
Scaling Up Swarming Tasks . . .
r ,\ Y e gym-pybullet-drones providing abundant simulation data for
w \ /f learning complex tasks
‘R'R'RRRE J/ e safe-control-gym bridging the gap between learning-based
| control and safe reinforcement learning
‘,\J\ ﬁ\ {\ ,f\\ /\ /\\ﬁ \\ i e simZ2real aerial competition fostering reproducibility and
N\ﬂ . \‘3 ! 3 , 4 solutions’ diversity in robotics challenges
| ) v /
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Safe Decision-Making for Aerial Swarms

Part | Part Il Part lli
Robust Range-Based Methods  Control Theoretic Approaches  Simulation Tools and Datasets
for for for
Reliable Aerial Swarm Efficient Swarm Coordination Scaling Up Swarming Tasks
L - A AAAA
Localization o =0 . w A \(\ \ A
“r) e -\ J\\f, IV f
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