
Motion Planning Lecture 9

Sampling-Based Motion Planning: More Theory and Planners (EST,

RRT-Connect, PRM*, LazyPRM, FMT*); Intro to Optimization

Wolfgang Hönig (TU Berlin) and Andreas Orthey (Realtime Robotics)

June 19, 2024



Recap: Sampling-based Motion Planning

Geometric

Basic: PRM, RRT, (EST, LazyPRM)

(Bidirectional: RRT-Connect)

Optimizing: RRT*, BIT*, SST*, (PRM*,

FMT*)

Kinodynamic

Basic: kinodynamic RRT

Optimizing: AO-x, SST*

OMPL
C++ Library with Python bindings
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Theoretical Insights



Robustly Feasible Motion-Planning Problem: Definitions

Robust Path/Trajectory

Let Bδ(q) be the d−dimensional ball of radius δ > 0 around configuration q ∈ Q. A

path/trajectory q : [0,T ] → Q is robust, if there exists δ > 0 such that:

Bδ(q(t)) ∈ Qfree ∀t ∈ [0,T ].

Robust Feasibility

A motion planning problem is robustly feasible if a robust solution trajectory exists.

Robust Optimum

The robust optimum of a motion planning problem is:

J∗ = inf{J(q(p)) |q(p) is a robust solution}.
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Robustly Feasible Motion-Planning Problem: Examples

Source: [1]

Source: [2]

Why is this useful?

Probability of sampling a specific point is zero!
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Recap: Completeness [3]

Completeness

An algorithm A is complete if in a finite amount of time, A always finds a solution if a

solution exists or otherwise A determines that a solution does not exist. E.g., A*

Resolution Completeness

An algorithm A is resolution complete if in a finite amount of time and for some small

resolution step ϵ > 0, A always finds a solution if a solution exists or otherwise A

determines that a solution does not exist. E.g., State-Lattice A*

Probabilistic Completeness

An algorithm A is probabilistically complete if the probability of finding a solution, if a

solution exists, converges to 1, when the running time approaches infinity. E.g., RRT
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Completeness of (geometric and kinodynamic) RRT [4]

1 def RRT(Q,Wfree ,B(·), d(·, ·),qstart ,Qgoal):

2 T = (V, E) = ({qstart}, ∅)
3 while True:

4 qrand = SAMPLE (Qfree)

5 qnear = NEAREST (qrand ,V)
6 qnew = STEER(qnear ,qrand)

7 if path qnear to qnew feasible:

8 V = V ∪ {qnew}
9 E = E ∪ {path qnear to qnew}

10 if qnew ∈ Qgoal:

11 return solution

Assume there exists a solution,

i.e., a discrete sequence of

configurations q0,q1, . . . ,qk+1

and controls u0,u2, . . . ,uk .
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Completeness of (geometric and kinodynamic) RRT [4]

Induction for i = 0, . . . , k + 1 with hypothesis that a solution to qi is found:

• For i = 0, this is trivially true since we add qstart in line 2

• Now assume it holds for i ; we need to show the property for i + 1:

• Assume the volume of each Voronoi region of the vertices is lower-bounded:

µ(Voronoi(vj)) > c1 ∀v ∈ V
• The probability of selecting qi for extension is Ps =

µ(Voronoi(qi ))
µ(Qfree)

≥ c1
µ(Qfree)

• Assume the probability to sample ui such that we reach qi+1 from qi is

lower-bounded by c2

• Probability to connect in one step : Pc ≥ c2 · Ps

• Probability to connect after j iterations: Pj ≥ 1− (1− Pc)
j

• limj→∞ Pj = 1
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Completeness of (geometric and kinodynamic) RRT [4]

Why does this proof not work for problems that are not robustly feasible?

Depending on the case, c1 or c2 might be zero.

Why does this proof not work to show convergence to optimal solution?

(Assume q0,q1, . . . ,qk+1 is a optimal sequence.)

Induction over pairs qi ,qi+1 not sufficient. We would need to show that q0, . . . ,qi
leads to adding qi+1 with qi as parent.
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Not All RRTs are Complete (1) [5]

Consider the RRT variant with fixed ∆t and best-input (analytical version of guided

monte carlo)

Source: [5]
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Not All RRTs are Complete (2) [5]

Source: [5]

• Dynamics: ẋ1 = u; ẋ2 = u2 − 3;

−1 ≤ u ≤ 1

• We have −3 ≤ ẋ2 ≤ −2 ⇒ always

moves in a negative direction;

impossible to revisit an earlier state
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Not All RRTs are Complete (3) [5]

Source: [5]

• Consider the intermediate tree with 3

nodes (complete algorithm has to

“recover” from any intermediate tree)

• Some space will never be explored

(need to select xinit in first step; but

then best-input would always pick xa

or xb)
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Completeness Convergence (geometric PRM) [6]

1 def GenPRM(Q,Wfree ,B(·),N):

2 G = (V, E) = (∅, ∅)
3 # Generate N vertices

4 while |V| < N:

5 q = Sample(Q)

6 if B(q) ⊂ Wfree:

7 V = V ∪ {q}
8 # Connect vertices

9 for q in V:
10 for p in {p ∈ V : isNeighbor(p,q)}:
11 if path q to p feasible:

12 E = E ∪ {path q to p}
13 return G

Source: [6]

• R: minimum clearance of solution

q(p)

• L: Total path length (J(q(p)))
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Completeness Convergence (geometric PRM) [6]

• Distribute configurations q0,q1, . . .qk on

solution, with k = ⌈2L/R⌉, s.t.:

d(qi ,qi+1) ≤ R/2 ∀i

• Then we have (triangle inequality):

BR/2(qi+1) ⊂ BR(qi ) ∀j = 0, . . . , k − 1

• For any c ∈ BR/2(qi ) and d ∈ BR/2(qi ), we

know that cd ∈ Qfree , because c , d ∈ BR(qi ) Source: [6]
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Completeness Convergence (geometric PRM) [6]

• Assume PRM generated N configurations

p1, . . . ,pN

• If we have at least one pj inside each ball

BR/2(qi ), PRM will find the solution (using the

geometric observations from last slide)

• Probability that sample pj is in BR/2(qi ):

P[Sample is in Ball i ] =
µ(BR/2(qi ))

µ(Qfree)

• Probability that sample pj is not in BR/2(qi ):

P[Sample is not in Ball i ] = 1−
µ(BR/2(qi ))

µ(Qfree)

Source: [6]
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Completeness Convergence (geometric PRM) [6]

• Probability that no sample is in BR/2(qi ):

P[No Sample in Ball i ] =

(
1−

µ(BR/2(qi ))

µ(Qfree)

)N

• Probability of not finding a solution:

P[Failure] ≤ P[Some ball is empty]

≤
k−1∑
i=1

P[No Sample in Ball i ]

=

(⌈
2L

R

⌉
− 1

)(
1−

µ(BR/2(qi ))

µ(Qfree)

)N

Source: [6]
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Completeness Convergence (geometric PRM) [6]

PRM Completeness Bound

The probability of PRM with N vertices not finding a solution in a d-dimensional space

is bounded by:

P[Failure] ≤ 2L

R
e−αdR

dN ,

where L is the path length, R is the minimum clearance, and αd is a constant.

This is exponential in N, i.e., very fast convergence!

Similar results for RRT, see [4, 7].
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Completeness Convergence (geometric PRM) [6]

What happens if I change R = 1m to R = 0.5m?

Probability of failure increases (not linear).

What happens if problem is not robustly feasible?

R is zero, i.e., undefined.

How can we show probabilistic completeness using this result?

lim
N→∞

P[Failure] ≤ 0
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Recap: Optimality

Optimality

An algorithm A is optimal if in a finite amount of time, A always finds the solution with

the lowest cost c∗ if a solution exists. E.g., A*

Bounded Suboptimality

An algorithm A is bounded suboptimal if in a finite amount of time, A always finds

the solution of cost c that is at most a factor of ϵ larger than the optimal cost c∗ if a

solution exists: E.g., Weighted-A*

c ≤ ϵc∗.
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Recap: Optimality

Asymptotic Optimality

An algorithm is asymptotically optimal, if the probability that the solution cost ct

approaches c∗ is 1, when the running time approaches infinity: E.g., RRT*

lim
t→∞

P[{ct − c∗ > ϵ}] = 0, ∀ϵ > 0.

Asymptotic Near-Optimality

An algorithm is asymptotically near-optimal, if the probability that the solution cost ct

is at most a factor of ϵ larger than the optimal solution c∗ is 1, when the running time

approaches infinity: E.g., SST*

lim
t→∞

P[{ct > ϵc∗}] = 0.
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Recap: Optimality

Does Optimality Imply Completeness?

No (an optimal algorithm may never terminate if no solution exists).

Does Asymptotic Optimality Imply Probabilistic Completeness?

Yes.
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Asymptotic Optimality of PRM* [2]

1. Cover the trajectory with balls, as before

2. For each number of iterations use a different “robustness” δn, i.e., the optimal

δn-robust solution is c∗n (such that limn→∞ δn = 0)

3. Analyze:
∞∑
n=1

P[{cn − c∗n > ϵ}]

4. This is bounded, i.e., < ∞ (Intuition: P[{cn − c∗n > ϵ}] is exponential in n)

5. Use Borel–Cantelli lemma (if the sum is probabilities of events is finite, then the

probability that infinite many of them occur is zero)
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Asymptotic Optimality of RRT* [1, 2]

Challenges Over PRM*

• There is an order between vertices in the tree

• Sampling is not uniform i.i.d. anymore

• Still use the same sequence of balls idea

• Now adds another dimension (time) to deal with ordering and need to show that

neighboring balls can be connected

21



Asymptotic Optimality of AO-x [8]

Assumptions

• Underlying algorithm is complete (termination in finite time)

• Non-negligible improvement in each iteration

• Show that, in expectation, cn − c∗n reduces exponential in n and use Markov

inequality (P(X > ϵ) ≤ E [X ]/ϵ)

• Details, see Lecture 7

Convergence rate not useful, since it assumes that improvement in non-negligible factor

ω.
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Asymptotic Optimality Convergence [9]

Convergence Rate of PRM*

PRM* converges to the optimal solution with rate:

O(N−1/d+ρ),

where N is the number of vertices, d the dimension of the configuration space, and ρ

is a small positive constant.

This is much slower than the convergence to a feasible solution (which was exponential

in N).
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Do We Need True Randomness? [10]

Using deterministic sequences (e.g., Halton sequence) has many advantages:

• Remains asymptotically optimal

• Works with smaller connection radii

• Known suboptimality convergence rate (i.e., for a user-specified suboptimality, we

can compute number of iterations)

• Empirically (slightly) better
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More Sampling-based Planners



EST: Expansive Space Trees (1) [11]

• Key insight: use explicit function rather than Voronoi bias for exploration

1 def EST(Q,Wfree ,B(·),qstart ,Qgoal):

2 T = (V, E) = ({qstart}, ∅)
3 while True:

4 q =randomly choose from V with

probability πT (q)↪→

5 p = random configuration near q

6 if path q to p feasible:

7 V = V ∪ {p}
8 E = E ∪ {path q to p}
9 if p ∈ Qgoal:

10 return solution

Source: [3]

25



EST: Expansive Space Trees (2)

• Choice of probability density function πT (q): Good exploration of Qfree , e.g.,

proportional to dispersion

• πT (q) often changes during the search

Online Dispersion Estimation

• Discretize Q in a grid

• Count the number of q ∈ V that belong to each grid cell

• Probability πT (q) is inverse proportional to the number corresponding to the grid

cell of q

EST Main Challenge

Difficult to define πT (q) efficiently.
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RRT-Connect (1) [12]

• Bidirectional search: Use two trees: one rooted at qstart , one rooted at qgoal

• Try to connect both trees
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RRT-Connect (2)

Source: [13]

• Sample qrand and Extend the goal tree (right side)
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RRT-Connect (3)

Source: [13]

• qtarget is now the goal for the init tree (left side)
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RRT-Connect (4)

Source: [13]

• Calculate qnear (closest node to qtarget in init tree)

30



RRT-Connect (5)

Source: [13]

• Try to connect qnear and qtarget
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RRT-Connect (6)

Source: [13]

• Solution is the path connecting qinit and qgoal
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RRT-Connect (7)

Pseudo-Code from the original paper:

Source: [12]

What is the purpose of SWAP

here?
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RRT-Connect Examples (1)

Source: [12]
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RRT-Connect Examples (2)

Source: [12]
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RRT-Connect Examples (3)

Source: [12]
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PRM*

1 def GenPRM(Q,Wfree ,B(·),N):

2 # ...

3 for q in V:
4 for p in {p ∈ V : isNeighbor(p,q)}:
5 if path q to p feasible:

6 E = E ∪ {path q to p}
7 return G

• Pseudo code from [2]

• Consistent with our previous

pseudo code of PRM (lecture

5)

• Neighbors are computed

using the dynamic radius,

depending on |V|

How does this work for parallel

pre-processing and query?
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LazyPRM (1) [15]

LazyPRM Insight

Collision checking takes majority of the time ⇒ delay as much as possible

Source: [14]
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LazyPRM (2) [15]

What is a good strategy for collision checking here? (Goal: Minimize collision

checks.)

1. Check vertices starting from qstart and qgoal towards the center.

2. Check edges with a coarse granularity (i.e., start with midpoint of each edge)

following the same edge order (edges close to start/goal first).

3. Iteratively refine edge-checking granularity.

39



LazyPRM (2) [15]

Solution path found on the initial roadmap; 1 vertex in collision (*)

Source: [14]
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LazyPRM (3) [15]

Vertex (and edges) in roadmap deleted; New solution path found (1 vertex collision)

Source: [14]
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LazyPRM (4) [15]

Vertex (and edges) in roadmap deleted; New solution path found (1 edge collision)

Source: [14]
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LazyPRM (5) [15]

Final solution path found after fine-grained edge checking

Source: [14]
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LazyPRM (6) [15]

Node Enhancement:

• Add additional vertices, once roadmap becomes disconnected

• Select seeds, i.e., vertices that are close to the boundary (e.g., midpoints of edges

that were discovered to be in collision)

• Sample new points close to the seed vertices (e.g., normal distribution)

OMPL

LazyPRM in OMPL does not include all changes as in paper [15]. LazyPRM* and

LazyRRT follow the same key insight, but are not described in a paper.
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Fast marching tree (FMT*) (1) [9]

Background: Fast Marching Method

• Numerical method to track the front of a propagating wave [16]

• Example: Throw a stone in a pond with different fluids (water; oil); This method

can track the wavefront over time

• Related to Dijkstra: build the solution in an outward direction, without

backtracking

Source: [17]
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Fast marching tree (FMT*) (2) [9]

Source: [9]
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Fast marching tree (FMT*) (3) [9]

Select the lowest-cost configuration z from set Vopen and find neighbors in Vunvisited

within radius rn (similar to RRT*/PRM*). [Lines 2 – 3]

Source: [9] 47



Fast marching tree (FMT*) (4) [9]

For a neighbor x , find nearby configurations (within rn of x) in Vopen. [Lines 4 – 5]

Source: [9]
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Fast marching tree (FMT*) (5) [9]

Pick the lowest-cost neighbor (ignoring obstacles) and add if edge is collision free.

[Line 6]

Source: [9] 49



Fast marching tree (FMT*) (6) [9]

After z is explored: put it in Vclosed , add new configurations to Vopen [Lines 7 – 8]

Source: [9]
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Fast marching tree (FMT*) (7) [9]

How does this differ from RRT*?

• Vertices are pre-sampled (i.e., more similar to PRM than RRT) ⇒ (vanilla)

FMT* is not anytime

• Usage of different sets (unvisited, open, closed), which allows local Bellman

optimality

Properties

• Asymptotically Optimal with known convergence rate

• Time: O(n log n), Collision checks: O(n), Space: O(n log n)
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Convex Optimization



Optimization Problems

Unconstrained Optimization

Let x ∈ Rn, f : Rn → R. Find:
argmin

x
f (x).

Constrained Optimization

Let x ∈ Rn, f : Rn → R, g : Rn → Rm, h : Rn → Rl . Find:

argmin
x

f (x) s.t. g(x) ≤ 0, h(x) = 0.

• Blackbox: only f (x) can be evaluated

• Gradient: ∇f (x) can be evaluated

• 2nd order: ∇2f (x) can be evaluated
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Optimization Algorithms

• Gradient Descent (unconstrained)

• Augmented Lagrangian (converts constrained in unconstrained problem)

General Optimization is Local

Most algorithms are local and only provide a (refined) solution around the initial guess.
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Convex Optimization (1)

Convex Set

A set X is convex iff (if and only if):

∀x , y ∈ X , a ∈ [0, 1] : ax + (1− a)y ∈ X

x

y

Source: Wikipedia
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Convex Optimization (2)

Convex Function
A function f : Rn → R is convex iff:

∀x , y ∈ Rn, a ∈ [0, 1] : f (ax + (1− a)y) ≤ af (x) + (1− a)f (y)

Source: Wikipedia
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Convex Optimization (3)

Convex Set

A set X is convex iff (if and only if):

∀x , y ∈ X , a ∈ [0, 1] : ax + (1− a)y ∈ X

Convex Function
A function f : Rn → R is convex iff:

∀x , y ∈ Rn, a ∈ [0, 1] : f (ax + (1− a)y) ≤ af (x) + (1− a)f (y)

Convex Program / Optimization

A constrained optimization problem is convex iff f and g are convex and h is linear.
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Convex Optimization (4)

Convex Optimization Is Global

Every local minima is a global minimum!

But still difficult to find such minima in predictable time.
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Convex Optimization (5)

Linear Program (LP)

argmin
x

c⊤x s.t. Gx ≤ h,Ax = b.

Can be solved in polynomial time!

Quadratic Program (QP)

argmin
x

1

2
xQx⊤ + c⊤x s.t. Gx ≤ h,Ax = b.

If Q is positive definite, can be solved in polynomial time!

Source: Wikipedia
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Conclusion

• Different forms of completeness

• Proofs use robust feasibility to compute probabilities of not sampling (or

connecting) vertices

• Different forms of optimality

• Proofs are similar in style and keep track of cost-reductions over time

• New variants for geometric planners: EST, RRT-Connect, PRM*, Lazy PRM,

FMT*

• Intro to (convex) optimization

Next Time
• Part 3: Optimization-based Motion Planning
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Suggested Reading

1. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard,

Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and

Implementations. Intelligent Robotics and Autonomous Agents Series. Cambridge, MA, USA: A

Bradford Book, 2005. 630 pp. isbn: 978-0-262-03327-5, Section 7.4

2. Papers referenced in the slide titles
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