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Recap

• Tree-based motion planning: RRT (probabilistic complete (PC), but suboptimal)

• Asymptotic Optimality (AO)

• RRT* introduces rewiring (probablistic complete and asymptotically optimal)

• Proof sketches

• PC RRT (by induction; series of connectable balls)

• AO RRT* (by induction; use re-wiring to establish correct sequence)

• Informed RRT* and BIT*
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Kinodynamic planning

Given

• State space Q and free state space Qfree

• Control space U
• Dynamics q̇(t) = f(q(t),u(t))

• Initial state qstart ∈ Qfree

• Goal region Qgoal ⊂ Qfree

• Cost c = J(T ,u(t),q(t))

Desired

• Trajectory π : [0,T ] → Qfree × U
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Kinodynamic planning

• Feasible kinodynamic planning: Compute a trajectory π

• Optimal kinodynamic planning: From all feasible trajectories, select the one

which minimizes the cost (we call it π⋆)
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Optimal kinodynamic planning

Steering vs Forward Propagation
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Steering vs Forward Propagation

Two variants

Two types of kinodynamic planning depending on information available

• Steering

• Forward propagation
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Steering vs Propagation

Planners require access to dynamical function f. This can be accomplished in two ways

• Steering: Given two states q, q′, compute controls to move robot from q to q′

• Involves solving a boundary-value problem (BVP)

• Computationally expensive

• Tricky if dynamical constraints are involved

• Forward Propagation: Given a state q, a control u, and a time ∆t, compute the
next state q′ by applying control u for time ∆t

• Simple to compute

• Does not require knowledge of system

• Unclear how to use it for (optimal) planning
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Steering function

Steering function

Planning with steering functions as generalized interpolation

• Reduction to geometric case

• Any geometric planner can be applied

• PRM, RRT*, or BIT*

8



Forward propagation

Planning with forward propagation

• Difficult: Unclear how to exploit forward propagation

• How to make this optimal?

• Optimal kinodynamic motion planning: Naive random trees and SST*

9



Optimal kinodynamic planning

Meta algorithm
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Meta Algorithm (for kinodynamic planning with forward propagation)

Meta(qstart , Qgoal , Q, U , f, tprop)

• T = InitializeTree(qstart)

• While Not Terminated

• qselect = SelectNode(T, Q)

• qnew = Propagate(qselect , U , f, tprop)
• MaybeAddConnection(qselect , qnew )

Note: In practice, we would terminate either after N iterations, or when a path is

found, or when a certain cost is reached, etc. For the theoretical analysis, however, we

assume that the algorithm will not terminate (asymptotic optimality can only be

reached in the limit).
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Meta Algorithm

Select Node

• Uniform Selection: Pick a node from the graph at random

• Exploration First: Pick a node which increases explorative nature of algorithm

(cover state space as quickly as possible)

• Best First: Pick a node on a high-quality path

Propagate Node

MaybeAddConnection
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Meta Algorithm

Select Node

Propagate Node

• Fixed Duration: Pick random controls, then apply them for a fixed time tprop

• Monte-Carlo: Pick random control and random time, then propagate system

forward

• Guided Monte-Carlo (”shooting” method): Select random target state. Sample k

controls and k times. Propagate them forward and select the node nearest to

target as return value.

MaybeAddConnection
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Meta Algorithm

Select Node

Propagate Node

MaybeAddConnection

• Collision-free: Add connection if no collision occured

• Prune dominated: Add connection if collision free and locally having the best

cost.
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Meta Algorithm

Instantiations of Meta algorithm

Algorithms differ in how they implement the three modules ”Select Node”, ”Propagate

Node”, and ”MaybeAddConnection”.

• Kinodynamic RRT (kRRT)

• Naive Random Trees (NRT)

• Stable sparse trees (SST*)

13



Optimal kinodynamic planning

Kinodynamic RRT
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Kinodynamic RRT

Kinodynamic RRT

• Select Node: Exploration First Selection

• Propagate Node: Guided Monte Carlo Propagation

• Maybe add connection: Collision-Free Checking
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Kinodynamic RRT

Select Node
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Kinodynamic RRT

Select Node
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Kinodynamic RRT

Select Node
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Kinodynamic RRT

Propagate Node
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Kinodynamic RRT

Propagate Node
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Kinodynamic RRT

Propagate Node
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Kinodynamic RRT

Propagate Node
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Kinodynamic RRT

Propagate Node
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Kinodynamic RRT

Propagate Node
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Kinodynamic RRT

Propagate Node
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Kinodynamic RRT

Propagate Node
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Kinodynamic RRT

Maybe Add Connection

27



Kinodynamic RRT

Maybe Add Connection
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Kinodynamic planning

Properties

Kinodynamic RRT is probabilistically complete*

*For specific classes of dynamical systems.

LaValle and Kuffner, ”Randomized Kinodynamic Planning”, 2001

Kleinbort et al., ”Probabilistic completeness of RRT for geometric and kinodynamic planning with

forward propagation”, 2022
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Kinodynamic planning

Small-space local controllability (SSLC) property
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Kinodynamic planning

Small-space local controllability property
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Kinodynamic planning

Small-space local controllability property
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Kinodynamic planning

Small-space local controllability property
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Kinodynamic planning

Small-space local controllability property
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Kinodynamic planning

Small-space local controllability property
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Kinodynamic planning

Small-space local controllability property

Small-space local controllability property: Any configuration q′ at a distance less than

δ is reachable from q by an admissible trajectory included in a ball of size ϵ > δ. 36



Kinodynamic planning

Series-of-balls argument in kinodynamic planning
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Kinodynamic planning

Series-of-balls argument in kinodynamic planning
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Kinodynamic planning

Series-of-balls argument in kinodynamic planning
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Kinodynamic planning

Series-of-balls argument in kinodynamic planning
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Kinodynamic planning

Series-of-balls argument in kinodynamic planning
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Kinodynamic planning

Series-of-balls argument in kinodynamic planning
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Kinodynamic planning

Series-of-balls argument in kinodynamic planning
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Kinodynamic planning

Series-of-balls argument in kinodynamic planning
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Kinodynamic planning

Question

Is kinodynamic RRT also asymptotically optimal?
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Optimal kinodynamic planning

Naive Random Trees
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Naive Random Trees

Naive Random Trees

• Select Node:

Uniform Selection

• Propagate Node:

Monte Carlo

• Maybe add connection:

Collision-Free Checking

Source: [1]
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Naive Random Trees

Select Node

48



Naive Random Trees

Select Node

49



Naive Random Trees

Propagate Node
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Naive Random Trees

Propagate Node
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Naive Random Trees

Properties

Naive Random Trees is asymptotically optimal

Question

Why is that so?

Y Li, Z Littlefield, KE Bekris, ”Asymptotically Optimal Sampling-based Kinodynamic Planning”,

2016
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Naive Random Trees

Proof sketch
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Naive Random Trees

Proof sketch
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Naive Random Trees

Proof sketch
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Naive Random Trees

Drawbacks

• Selection of nodes uninformative

• High memory footprint
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Optimal kinodynamic planning

Stable sparse trees (SST*)
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Sparse Stable Trees (SST)

Sparse stable trees (SST*)

• Select Node: Best First Selection

• Propagate Node: Monte Carlo

• Maybe add connection: Collision-Free Checking + Pruning

SST = Naive random trees with better selection and pruning
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Sparse Stable Trees (SST): Best First Selection

• Select node with lowest cost-to-come within a neighborhood

Source: [1]
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Sparse Stable Trees (SST)

SST Pruning

Pruning based on Witness set

Witness Set

Set of states (S ⊂ Q) used as helper data structure.

Invariant for each s ∈ S: only a single node of the search tree within radius δS represents

that state s and has best path cost from root.
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Sparse Stable Trees (SST)

Witness set: Search tree
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Sparse Stable Trees (SST)

Witness set: witnesses s ∈ S in yellow
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Sparse Stable Trees (SST)

Witness set

Adding connections
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Sparse Stable Trees (SST)

Adding connection: Case 1 - No witness
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Sparse Stable Trees (SST)

Adding connection: Case 1 - No witness
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Sparse Stable Trees (SST)

Adding connection: Case 2 - Existing witness
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Sparse Stable Trees (SST)

Adding connection: Case 2 - Existing witness
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Sparse Stable Trees (SST)

Adding connection: Case 2 - Existing witness

68



Sparse Stable Trees (SST)

Adding connection: Case 2a - Better cost
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Sparse Stable Trees (SST)

Adding connection: Case 2b - Worse cost
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Sparse Stable Trees (SST)

Subtree pruning
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Sparse Stable Trees (SST)

Subtree pruning
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Sparse Stable Trees (SST)

Subtree pruning
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Sparse Stable Trees (SST)

Subtree pruning
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Sparse Stable Trees (SST)

Subtree pruning
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Sparse Stable Trees (SST)

Subtree pruning
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Sparse Stable Trees (SST)

Subtree pruning
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Sparse Stable Trees (SST)

Subtree pruning
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Sparse Stable Trees (SST)

Properties

Sparse Stable Trees (SST*) is asymptotically near-optimal (AnO)

Asymptotically near-optimal

Planner finds a solution with cost at most (1 + ϵ)c∗

Y Li, Z Littlefield, KE Bekris, ”Asymptotically Optimal Sampling-based Kinodynamic Planning”,

2016
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Sparse Stable Trees (SST)

Advantages

• Selection always picks a locally optimal node

• Memory footprint is minimized

Drawbacks

• Need to choose a good δS for the witness radii

• AnO, not AO
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Optimal kinodynamic planning

AO-x
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AO-x [2]

• AO-x is a meta algorithm

• Input is any feasible kinodynamic planner

• Idea: Convert the bounded-suboptimal version of optimal kinodynamic planning

into a feasible kinodynamic problem

• Then iterate: Solve bounded-suboptimal version, compute best cost found, setup

new bounded-suboptimal version with this cost, etc
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State-Cost Space

• Augment configuration space

Q with a real cost dimension:

Q′ = Q× R+
0

• Augment dynamics f, where

q′ = (q, c):

f ′(q′,u) =
(
f(q,u),∆c

)

83



AO-x: Pseudo Code [2]

• A is typically (kinodynamic) RRT or EST

• Pc̄ is a problem instance with cost bound c̄
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AO-x: Proof of asymptotic optimality (AO)

Assumptions

1. A terminates in finite time, if solution within given bound c̄ exists

2. A reduces cost by a nonnegligible amount.

E [c(yi )|c̄]− c∗ ≤ (1− ω)(c̄ − c∗) for ω > 0,

where c∗ is the optimal cost and c̄ the cost limit
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AO-x: Proof of asymptotic optimality (AO)

Proof Goal

Let S0, . . . ,Sn be random variables for c(yi )− c∗. Then for any ϵ > 0 we have:

lim
n→∞

P(Sn ≥ ϵ) = 0

Proof helpers:

• Markov inequality: P(Sn ≥ ϵ) ≤ E [Sn]/ϵ

• Assumption 2 (cost reduction by nonnegligible amount): E [Sn|sn−1] ≤ (1−ω)sn−1
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AO-x: Proof of asymptotic optimality (AO)

Use E [Sn|sn−1] ≤ (1− ω)sn−1:

E [Sn] =

∫
E [Sn|sn−1]P(sn−1)dsn−1

≤
∫
(1− ω)sn−1P(sn−1)dsn−1

= (1− ω)

∫
sn−1P(sn−1)dsn−1

= (1− ω)E [Sn−1]

= (1− ω)nE [S0]

Use Markov inequality:

P(Sn ≥ ϵ) ≤ E [Sn]/ϵ

P(Sn ≥ ϵ) ≤ (1− ω)nE [S0]/ϵ

Take the limit:

lim
n→∞

P(Sn ≥ ϵ) ≤ (1− ω)nE [S0]/ϵ

= 0
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AO-x

Advantages

• Planner agnostic

• Enhances theoretical properties (AO)

Drawbacks

• By default, no re-use of data between iterations

• Unknown convergence rate (rather poor empirically)
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More Tree-based Geometric Motion

Planning: EST, RRT-Connect



EST: Expansive Space Trees (1) [4]

• Key insight: use explicit function rather than Voronoi bias for exploration

1 def EST(Q,Wfree ,B(·),qstart ,Qgoal):

2 T = (V, E) = ({qstart}, ∅)
3 while True:

4 q =randomly choose from V with

probability πT (q)↪→

5 p = random configuration near q

6 if path q to p feasible:

7 V = V ∪ {p}
8 E = E ∪ {path q to p}
9 if p ∈ Qgoal:

10 return solution

Source: [3]
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EST: Expansive Space Trees (2)

• Choice of probability density function πT (q): Good exploration of Qfree , e.g.,

proportional to dispersion

• πT (q) often changes during the search

Online Dispersion Estimation

• Discretize Q in a grid

• Count the number of q ∈ V that belong to each grid cell

• Probability πT (q) is inverse proportional to the number corresponding to the grid

cell of q

EST Main Challenge

Difficult to define πT (q) efficiently.
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RRT-Connect (1) [5]

• Bidirectional search: Use two trees: one rooted at qstart , one rooted at qgoal

• Try to connect both trees
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RRT-Connect (2)

Source: [6]

• Sample qrand and Extend the goal tree (right side)
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RRT-Connect (3)

Source: [6]

• qtarget is now the goal for the init tree (left side)

93



RRT-Connect (4)

Source: [6]

• Calculate qnear (closest node to qtarget in init tree)

94



RRT-Connect (5)

Source: [6]

• Try to connect qnear and qtarget
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RRT-Connect (5)

Source: [6]
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RRT-Connect (5)
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RRT-Connect (5)
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RRT-Connect (5)

Source: [6]

• Try to connect qnear and qtarget
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RRT-Connect (6)

Source: [6]

• Solution is the path connecting qinit and qgoal
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RRT-Connect (7)

Pseudo-Code from the original paper:

Source: [5]

What is the purpose of SWAP

here?
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RRT-Connect (7)

Pseudo-Code from the original paper:

Source: [5]

What is the purpose of SWAP

here?

97



RRT-Connect Examples (1)

Source: [5]
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RRT-Connect Examples (2)

Source: [5]
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RRT-Connect Examples (3)

Source: [5]
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Asymptotic Optimal Geometric

Motion Planning: PRM*



PRM*

1 def GenPRM(Q,Wfree ,B(·),N):

2 # ...

3 for q in V:
4 for p in {p ∈ V : isNeighbor(p,q)}:
5 if path q to p feasible:

6 E = E ∪ {path q to p}
7 return G

• Pseudo code from [7]

• Consistent with our previous

pseudo code of PRM (lecture

5)

• Neighbors are computed

using the dynamic radius,

depending on |V|

How does this work for parallel

pre-processing and query?
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PRM*
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Conclusion

• Kinodynamic planners: kinodynamic RRT/EST, SST(*), AO-x

• Geometric planners: EST, RRT-Connect, PRM*

Next Time

• Open Motion Planning Library (OMPL)
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