Motion Planning Lecture 5

Sampling-Based Geometric Motion Planning: PRMs

Wolfgang Hönig (TU Berlin) and Andreas Orthey (Realtime Robotics) May 22, 2024

Foundations

2 Weeks (problem formulation, terminology, collision checking)

Search-based

2 Weeks (A* and variants; state-lattice-based planning)

Sampling-based

5 Weeks (RRT, PRM, OMPL, Sampling Theory)

Optimization-based

2 Weeks (SCP, TrajOpt)

Current and Advanced Topics

3 Weeks (Comparative Analysis, Machine Learning and Motion Planning, Hybrid- and Multi-Robot approaches)

PRM: Probabilistic Roadmaps

Recap: Lecture 3: Probabilistic roadmap

Probabilistic roadmap

Idea: Sample random points in configuration space

Recap: Lecture 3: Probabilistic roadmap

Probabilistic roadmap

Idea: Sample random points in configuration space

Recap: Lecture 3: Probabilistic roadmap

Probabilistic roadmap

Idea: Sample random points in configuration space

Probabilistic Roadmap [1]

- Randomized algorithm, published in 1996
- Two stages
 - 1. Pre-processing (given environment and robot)
 - Generate a weighted graph (roadmap)

Probabilistic Roadmap [1]

- Randomized algorithm, published in 1996
- Two stages
 - 1. Pre-processing (given environment and robot)
 - Generate a weighted graph (roadmap)
 - 2. Query (given start and goal configuration)
 - Graph search

Probabilistic Roadmap [1]

- Randomized algorithm, published in 1996
- Two stages
 - 1. Pre-processing (given environment and robot)
 - Generate a weighted graph (roadmap)
 - 2. Query (given start and goal configuration)
 - Graph search

Multi-Query Planning

For the same environment and robot, only state 2 needs to be executed. Thus, PRM is a multi-query planner.

Graph Generation

- 1 def GenPRM($Q, W_{free}, \mathcal{B}(\cdot), N$):
- ² $\mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\emptyset, \emptyset)$
- 3 # Generate N vertices
- 4 while $|\mathcal{V}| < N$:
- $_{5}$ **q** = Sample(Q)
- 6 if $\mathcal{B}(\mathbf{q}) \subset \mathcal{W}_{\textit{free}}$:

$$\mathcal{V} = \mathcal{V} \cup \{\mathbf{q}\}$$

- 8 # Connect vertices
- 9 for q in \mathcal{V} :

```
10 for \mathbf{p} in \{\mathbf{p} \in \mathcal{V} : isNeighbor(\mathbf{p}, \mathbf{q})\}:
```

```
if path \boldsymbol{q} to \boldsymbol{p} feasible:
```

$$\mathcal{E} = \mathcal{E} \cup \{ \mathsf{path} \ \mathbf{q} \ \mathsf{to} \ \mathbf{p} \}$$

13 return
$$\mathcal{G}$$

11 12

Graph Generation

1 def GenPRM($Q, W_{free}, \mathcal{B}(\cdot), N$):

$$_2 \quad \mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\emptyset, \emptyset)$$

- 3 # Generate N vertices
- 4 while $|\mathcal{V}| < N$:

$$\mathbf{q} = \text{Sample}(\mathcal{Q})$$

if
$$\mathcal{B}(\mathbf{q}) \subset \mathcal{W}_{\mathit{free}}$$
 :

$$\mathcal{V} = \mathcal{V} \cup \{\mathbf{q}\}$$

- 8 *# Connect vertices*
- 9 for \mathbf{q} in \mathcal{V} :

10 for
$$\mathbf{p}$$
 in $\{\mathbf{p} \in \mathcal{V} : isNeighbor(\mathbf{p}, \mathbf{q})\}$:

if path \boldsymbol{q} to \boldsymbol{p} feasible:

$$\mathcal{E} = \mathcal{E} \cup \{ \mathsf{path} \ \mathbf{q} \ \mathsf{to} \ \mathbf{p} \}$$

13 return ${\cal G}$

11 12

Graph Generation

- 1 def GenPRM($Q, W_{free}, \mathcal{B}(\cdot), N$):
- $_2 \quad \mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\emptyset, \emptyset)$
- 3 # Generate N vertices
- 4 while $|\mathcal{V}| < N$:
- 5 $\mathbf{q} = \text{Sample}(\mathcal{Q})$
- 6 if $\mathcal{B}(\mathbf{q}) \subset \mathcal{W}_{\textit{free}}$:

$$\mathcal{V} = \mathcal{V} \cup \{\mathbf{q}\}$$

- 8 # Connect vertices
- 9 for \mathbf{q} in \mathcal{V} :

10 for
$$\mathbf{p}$$
 in $\{\mathbf{p} \in \mathcal{V} : \mathsf{isNeighbor}(\mathbf{p}, \mathbf{q})\}$:

if path **q** to **p** feasible:

$$\mathcal{E} = \mathcal{E} \cup \{ \mathsf{path} \ \mathbf{q} \ \mathsf{to} \ \mathbf{p} \}$$

13 return ${\cal G}$

11 12

- 1. Add $\boldsymbol{q}_{\textit{start}}$ and $\boldsymbol{q}_{\textit{goal}}$ to $\mathcal V$
- 2. Connect \mathbf{q}_{start} to at least one $\mathbf{q} \in \mathcal{V}$
- 3. Connect \mathbf{q}_{goal} to at least one $\mathbf{q} \in \mathcal{V}$
- 4. Use A* to find shortest path from \mathbf{q}_{start} to \mathbf{q}_{goal}

What constitutes a "good" roadmap?

- Accessible: For any $\mathbf{q}_{start} \in \mathcal{Q}_{free}$ we can compute a path to some $\mathbf{q} \in \mathcal{V}$
- Departable: For any $\textbf{q}_{\textit{goal}} \in \mathcal{Q}_{\textit{free}}$ we can compute a path from some $\textbf{q} \in \mathcal{V}$
- Connectivity-Preserving: For any $q,p\in \mathcal{Q}_{\it free}$ that can be connected, there is a path in the roadmap
- Efficient with factor *ϵ*: For any **q**, **p** ∈ Q_{free} that can be connected with cost *c*^{*}, there is a path in the roadmap with a cost of *ϵc*^{*} or less
- Sparse: As few vertices and edges as possible

Ideal Roadmap Properties (2)

1	def GenPRM($Q, W_{free}, B(\cdot), N$):
2	$\mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\emptyset, \emptyset)$
3	# Generate N vertices
4	#
5	# Connect vertices
6	#
7	return ${\cal G}$

When is the roadmap accessible, departable, connectivity-preserving, efficient, sparse?

Ideal Roadmap Properties (2)

1 def GenPRM($Q, W_{free}, \mathcal{B}(\cdot), N$): 2 $\mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\emptyset, \emptyset)$ 3 # Generate N vertices 4 # ... 5 # Connect vertices 6 # ...

7 return ${\cal G}$

When is the roadmap accessible, departable, connectivity-preserving, efficient, sparse?

$N \to \infty$

There will be $\mathbf{q} \in \mathcal{V}$ for almost every configuration in \mathcal{Q}_{free} . + Accessible, Departable, Connectivity-Preserving, Efficient - Not sparse; very slow computation (both pre-processing and query)

$N \rightarrow 0$

- Not Accessible, Not Departable, Not Connectivity-Preserving, Not Efficient + Sparse

Practical PRM Considerations

- Can run pre-processing and query in parallel
 - Incrementally increase roadmap size
 - Periodically check if a solution can be found
 - Avoids picking N explicitly
- Many variants are possible based on choice of Sample, isNeighbor, and feasible path computation
- Result is in the correct homeomorphism class, but often far from optimal (\Rightarrow Path Smoothing)

Sampling

Rejection Sampling

- 1. Sample $\textbf{q} \in \mathcal{Q}$ from a given distribution
- 2. Repeat until $\mathcal{B}(q) \subset \mathcal{W}_{\textit{free}} \ (\text{or:} \ q \in \mathcal{Q}_{\textit{free}})$

Does not require \mathcal{Q}_{free} explicitly

Inefficient in highly constrained spaces

Common distributions: Uniform distribution, Gaussian/Normal distribution, Deterministic Sequence

Composite Sampling (1)

- Configuration $\mathbf{q} = (x, y, \theta) \in \mathcal{Q}$
- All components are independent ⇒ we can sample all components independently:
 - 1. $x \sim \mathcal{U}(0,8)$
 - 2. $y \sim \mathcal{U}(0,8)$
 - 3. $\theta \sim \mathcal{U}(0, 2\pi)$
 - 4. Resulting state **q** is still drawn from a uniform distribution

What about SO(3) (orientation in 3D)?

Idea 0

- Sample three Euler angles uniformly between [0, 2π)
- Construct rotation (rotation matrix, quaternion, ...)

not uniform, because Euler angles are not independent

Composite Sampling (3)

What about SO(3) (orientation in 3D)?

Better idea

- Sample three numbers from $\mathcal{U}(0,1)$
- Quaternion

(qw, qx, qy, qz) = $(\sqrt{1 - u_1} \sin 2\pi u_2, \sqrt{1 - u_1} \cos 2\pi u_2, \sqrt{u_1} \sin 2\pi u_3, \sqrt{u_1} \cos 2\pi u_3)$

More: Section 5.5.2 of [3] and [2]

- Halton sequence (1960): better uniformity than pseudo-random numbers and incremental
- Examples:

$$p = 2$$

- Halton sequence (1960): better uniformity than pseudo-random numbers and incremental
- Examples:

- Halton sequence (1960): better uniformity than pseudo-random numbers and incremental
- Examples:

- Halton sequence (1960): better uniformity than pseudo-random numbers and incremental
- Examples:

- Halton sequence (1960): better uniformity than pseudo-random numbers and incremental
- Examples:

- Halton sequence (1960): better uniformity than pseudo-random numbers and incremental
- Examples:

- Halton sequence (1960): better uniformity than pseudo-random numbers and incremental
- Examples:

• Key idea: The i^{th} number written using prime number p as base

```
1 def GenHalton(p, i):
    h = 0
    j = i
   f = 1 / p
5
    while j > 0:
6
    quotient q, remainder r = j / p
    h = h + f * r
7
    j = q
8
    f = f / p
9
    return h
10
```

GenHalton(2, 6)
$h = 0; j = 6; f = \frac{1}{2}$
$q = 3; r = 0; h = 0; j = 3; f = \frac{1}{2 \cdot 2}$
$q = 1; r = 1; h = \frac{1}{4}; j = 1; f = \frac{1}{4 \cdot 2}$
$q = 0; r = 1; h = \frac{1}{4} + \frac{1}{8}; j = 0; f = \frac{1}{8 \cdot 2}$
38

Note: 6 (base 10) is 110 (base 2); $\frac{3}{8} = 0\frac{1}{2} + 1\frac{1}{4} + 1\frac{1}{8}$ • Example sequence (p = 2, i = 1, ..., 7):

$$\frac{1}{2}, \qquad \frac{1}{4}, \frac{3}{4}, \qquad \frac{1}{8}, \frac{5}{8}, \frac{3}{8}, \frac{7}{8}$$

- For higher-dimensional configuration spaces, use different prime numbers per dimension
 - $\mathcal{Q} \subset \mathbb{R}^2$: Use p = 2 for x and p = 3 for y

Which one is pseudo-random uniform and which one is Halton?

Halton

Dispersion

Let $\mathcal{P} \subset \mathcal{Q}$ be a set of points in the configuration space and $d : \mathcal{Q} \times \mathcal{Q} \to \mathbb{R}_{\geq 0}$ be a metric. The dispersion is the maximum distance from a configuration $\mathbf{q} \in \mathcal{Q}$ to its nearest sample $\mathbf{p} \in \mathcal{P}$:

$$dispersion_d(\mathcal{P}) = \max_{\mathbf{q}\in\mathcal{Q}}\min_{\mathbf{p}\in\mathcal{P}}d(q,p).$$

Dispersion (2)

Dispersion

$$dispersion_d(\mathcal{P}) = \max_{\mathbf{q} \in \mathcal{Q}} \min_{\mathbf{p} \in \mathcal{P}} d(x, p).$$

L∞-Norm

Minimal L ∞ Dispersion: A Grid

Why do we not use a grid for sampling?

Dispersion (4)

Sampling property	Uniform grids	Random sampling	Halton sequences
dispersion	$O\left(\frac{1}{\sqrt[d]{n}}\right)$	$Oig(rac{\ln^{1/d}(n)}{\sqrt[d]{n}}ig)$	$Oig(rac{f(d)}{\sqrt[d]{n}}ig)$
incremental	no	yes	yes
lattice	yes	no	yes (more complex)

Lattice Property

Neighbors can be computed directly

Nearest-Neighbor Computation

Efficient Nearest-Neighbor calculation with the following interface:

- addConfiguration(q) -> None: Adding a configuration $q \in \mathcal{Q}$ to the datastructure
- queryK(q, k) -> [Configuration]: Return the k nearest (with respect to a distance metric) configurations of q
- queryR(q, r) -> [Configuration]: Return the configurations that are within a given distance r of q

Background: Balanced binary search trees (1)

A balanced binary search tree with the points in the leaves

Background: Balanced binary search trees (2)

Searching if 25 is part of the tree

Background: Balanced binary search trees (3)

Search path for 25 and 90

Background: Balanced binary search trees (4)

A 1-dimensional range query with [25, 90]

- Build a binary search tree of N numbers (time: $\mathcal{O}(N \log N)$; space: $\mathcal{O}(N)$)
- Finding an entry: time: $\mathcal{O}(\log N)$
- Range query of K numbers: time $\mathcal{O}(\log N + K)$

What is the naive Range Query Time Complexity?

- Build a binary search tree of N numbers (time: $\mathcal{O}(N \log N)$; space: $\mathcal{O}(N)$)
- Finding an entry: time: $\mathcal{O}(\log N)$
- Range query of K numbers: time $\mathcal{O}(\log N + K)$

What is the naive Range Query Time Complexity?

We have to consider all N numbers $\Rightarrow \mathcal{O}(N)$

- Extend the same idea to multi-dimensional data
- 2D case:
 - Split the point set alternatingly by x-coordinate and by y-coordinate
 - Split by x-coordinate: split by a vertical line that has half the points left or on, and half right
 - Split by y-coordinate: split by a horizontal line that has half the points below or on, and half above

Kd-Tree Example

Kd-Tree Construction

_	
1	Algorithm BUILDKDTREE(P, depth)
1	if P contains only one point
2	2. then return a leaf storing this point
3	B. else if <i>depth</i> is even
4	then Split P with a vertical line ℓ through the
	median x-coordinate into P_1 (left of or
	on ℓ) and P_2 (right of ℓ)
5	else Split P with a horizontal line ℓ through
	the median y-coordinate into P_1 (below
	or on ℓ) and P_2 (above ℓ)
6	5. $v_{\text{left}} \leftarrow \text{BUILDKDTREE}(P_1, depth + 1)$
7	$V_{\text{right}} \leftarrow \text{BUILDKDTREE}(P_2, depth+1)$
8	3. Create a node v storing ℓ , make v_{left} the left
	child of v, and make v_{right} the right child of v.
g	$v_{\rm return V}$
	Source: [5]

Kd-Tree Regions of Nodes

Region can be:

- Stored explicitly at every node, OR
- Computed on-the-fly, while traversing from the root

Kd-Tree Query (1)

Traverse existing tree to find region of query point (leaf in tree)

Kd-Tree Query (1)

Traverse existing tree to find region of query point (leaf in tree)

Kd-Tree Query (1)

Traverse existing tree to find region of query point (leaf in tree)

Kd-Tree Query (2)

At leaf node: compute distance to each point in the node

Kd-Tree Query (2)

At leaf node: compute distance to each point in the node

Kd-Tree Query (3)

Backtrack to sibling nodes

Kd-Tree Query (4)

Update distance bounds, when a new nearest neighbor is found

Kd-Tree Query (5)

Prune search area based on region bounds and distance bounds

Kd-Tree Query (5)

Prune search area based on region bounds and distance bounds

Kd-Tree Query (5)

Prune search area based on region bounds and distance bounds

Kd-Tree: Practical Notes

- KD-trees are much faster than a naive implementation (time complexity: $\mathcal{O}(N^{1-1/d} + K)$
 - This is poor for high-dimensional spaces
 - Approximate Nearest Neighbor Algorithms (ANN) can help (but theoretical implications for sampling-based planners unknown)
- Possible to support more complicated configuration spaces (such as SE(3))
- KD-Trees have a construction and query stage!

How can KD-trees be used incrementally?

- Reconstruct the tree only every 1000 nodes, or so
- Keep Kd-tree and plain list since last reconstruction
- For a query, search both Kd-tree and list

PRM - Revisited

1 def GenPRM($\mathcal{Q}, \mathcal{W}_{free}, \mathcal{B}(\cdot), N$):

$$_2 \quad \mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\emptyset, \emptyset)$$

- 3 # Generate N vertices
- 4 while $|\mathcal{V}| < N$:

$$\mathbf{q}$$
 = Sample(\mathcal{Q}

if
$$\mathcal{B}(\mathbf{q}) \subset \mathcal{W}_{\mathit{free}}$$
 :

$$\mathcal{V} = \mathcal{V} \cup \{\mathbf{q}\}$$

- 8 *# Connect vertices*
- 9 for q in \mathcal{V} :

10 for
$$\mathbf{p}$$
 in $\{\mathbf{p} \in \mathcal{V} : isNeighbor(\mathbf{p}, \mathbf{q})\}$:

if path **q** to **p** feasible:

$$\mathcal{E} = \mathcal{E} \cup \{ \mathsf{path} \ \mathbf{q} \ \mathsf{to} \ \mathbf{p} \}$$

13 return ${\cal G}$

11 12

1 def GenPRM($\mathcal{Q}, \mathcal{W}_{free}, \mathcal{B}(\cdot), N$):

$$_2 \quad \mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\emptyset, \emptyset)$$

- 3 # Generate N vertices
- 4 while $|\mathcal{V}| < N$:

$$\mathbf{q} = \operatorname{Sample}(\mathcal{Q})$$

if
$$\mathcal{B}(\mathbf{q}) \subset \mathcal{W}_{\mathit{free}}$$
:

$$\mathcal{V} = \mathcal{V} \cup \{\mathbf{q}\}$$

- 8 # Connect vertices
- 9 for q in \mathcal{V} :

10 for
$$\mathbf{p}$$
 in $\{\mathbf{p} \in \mathcal{V} : isNeighbor(\mathbf{p}, \mathbf{q})\}$:

if path \boldsymbol{q} to \boldsymbol{p} feasible:

$$\mathcal{E} = \mathcal{E} \cup \{ \mathsf{path} \ \textbf{q} \ \mathsf{to} \ \textbf{p} \}$$

13 return ${\cal G}$

11

12

- Flexible Collision Library has continuous collision checking
 - Works as long as the motion is a linear interpolation of two configurations
- Alternative:
 - Compute intermediate configurations during the motion
 - Check the collision for each intermediate configuration
 - Note, that this is significantly slower than continuous collision checking

- The output of PRM is often far from optimal
- Post-processing of the data can help

Path Shortening

```
1 def PathShortening(\langle \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N \rangle):
```

- 2 Pick $\mathbf{q}_i, \mathbf{q}_j$ randomly
- ³ if $(\mathbf{q}_i, \mathbf{q}_i)$ can be connected by a line:
- 4 replace path between $\mathbf{q}_i, \mathbf{q}_j$ using the line

Path Shortening Example

Path Shortening Example

Path Shortening Example

PRMs are probabilistically complete

Guaranteed to find a solution, if one exists, but only in the limit of the number of samples (that is, only as the number of samples approaches infinity).

- This is a milder form of completeness
- Typically no convergence guarantee, so not that helpful in practice
- Sampling-based planning works very well in high-dimensional spaces

- PRM are multi-query planners
- Kd-trees allow fast nearest-neighbor computation
- Concept simple, but difficult in details
 - Choice of sampling
 - Choice of nearest-neighbor computation
 - Handling of metric spaces correctly throughout

<u>Next Time</u>

• Tree-based Planners; Optimizing Planners
- Oren Salzman. "Sampling-Based Robot Motion Planning". In: Communications of the ACM 62.10 (Sept. 24, 2019), pp. 54–63. ISSN: 0001-0782. DOI: 10.1145/3318164
- 2. F. Bullo and S. L. Smith. Lectures on Robotic Planning and Kinematics. 2019. URL: http://motion.me.ucsb.edu/book-lrpk/, Chapter 4
- Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006. ISBN: 978-0-521-86205-9. URL: http://planning.cs.uiuc.edu, Section 5.6
- Kevin M. Lynch and Frank C. Park. *Modern Robotics*. Cambridge University Press, 2017. ISBN: 978-1-107-15630-2. URL:

http://hades.mech.northwestern.edu/index.php/Modern_Robotics, Section 10.5

- L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. "Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces". In: *IEEE Transactions on Robotics and Automation* 12.4 (Aug. 1996), pp. 566–580. ISSN: 2374-958X. DOI: 10.1109/70.508439.
- J.J. Kuffner. "Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning". In: IEEE International Conference on Robotics and Automation. Vol. 4. 2004, pp. 3993–3998. DOI: 10.1109/ROBOT.2004.1308895.
- Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006. ISBN: 978-0-521-86205-9. URL: http://planning.cs.uiuc.edu.

References ii

- [4] F. Bullo and S. L. Smith. Lectures on Robotic Planning and Kinematics. 2019. URL: http://motion.me.ucsb.edu/book-lrpk/.
- [5] Frank Staals. Geometric Algorithms. 2021. URL: http://www.cs.uu.nl/docs/vakken/ga/2021/.
- [6] Dmitry Berenson. "Motion Planning: Robotics and Beyond". In: (2021). URL: https://web.eecs.umich.edu/~dmitryb/courses/ winter2021motionplanning/index.html.
- [7] Oren Salzman. "Sampling-Based Robot Motion Planning". In: Communications of the ACM 62.10 (Sept. 24, 2019), pp. 54–63. ISSN: 0001-0782. DOI: 10.1145/3318164.

[8] Kevin M. Lynch and Frank C. Park. Modern Robotics. Cambridge University Press, 2017. ISBN: 978-1-107-15630-2. URL: http://hades.mech.northwestern.edu/index.php/Modern_Robotics.