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Recap: A*

Input

• Weighted graph

G = (V, E) d : E → R

• Start vs ∈ V, Goal vg ∈ V
• admissible heuristic h : V → R

Output

optimal path in the graph; formally:

(v1, v2, . . . , vn) vi ∈ V (vi , vi+1) ∈ E
v1 = vs vn = vg

min
∑n−1

i=1 d((vi , vi+1))

Properties

• complete

• optimal /

admissible

• optimal efficient

Insight

Expansion using priority

queue ordered by

f (v) = g(v) + h(v)

Applications

• Route planner

• Robot navigation

• Computer games

A

vs

B C D E

vg

F
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Challenges for Robot Motion Planning

Realtime operation in dy-

namic environments

Need to be able to react to

unforeseen changes quickly.

Non-Holonomic Robots

Source: New Venturist

Some robots cannot move in

a 4-connected grid.

Large Robots

Source: Örebro University

Grid-size needs to be at least

as large as the robot.
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http://newventurist.com/2012/07/automation-is-now/
https://doi.org/10.14311/APP.2016.56.0047


Important A* Variants



Bounded Suboptimal Planning

• A* finds a solution and a proof of its optimality

• Sometimes the optimal solution is not needed

Bounded suboptimal planning

A solution is ϵ-optimal if its cost c is at most a factor of ϵ larger than the optimal cost

c∗:

c ≤ ϵc∗.
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Bounded Suboptimal Planning: Weighted-A* (wA*) [2]

• A*: Expansion order

f (v) = g(v) + h(v)

• Weighted-A*: Expansion order

f (v) = g(v) + ϵh(v), where ϵ ≥ 1

• ϵ > 1: Bias towards states that seem

to be closer to goal

• Weighted-A* is ϵ-optimal and works

well in practice [1]

State expansions A* vs. Weighted-A*
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Bounded Suboptimal Planning: A∗
ϵ (Focal Search) [3]

• FOCAL: subset of OPEN with f (v) at most ϵf (top(OPEN)) (up to a factor ϵ

larger than the smallest value in OPEN)

• FOCAL is a priority queue, sorted by an arbitrary heuristic function

• Search is identical to A*, but takes smallest element from FOCAL

• Focal search is ϵ-optimal

Example, where an inadmissible heuristic can be used!
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Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = ∞, g(n2) = ∞, g(n3) = ∞, g(n4) = ∞, g(t) = ∞
h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨⟩
FOCAL = ⟨⟩ Next state to expand:

6



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1
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g(s) = 0, g(n1) = ∞, g(n2) = ∞, g(n3) = ∞, g(n4) = ∞, g(t) = ∞
h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨s⟩
FOCAL = ⟨s⟩ Next state to expand: s
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Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = ∞, g(n3) = ∞, g(n4) = ∞, g(t) = ∞
h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨n1⟩
FOCAL = ⟨n1⟩ Next state to expand: n1
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Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) = ∞, g(t) = ∞
h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨n2, n3⟩
FOCAL = ⟨n3, n2⟩ Next state to expand: n3
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Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) = ∞, g(t) = 5

h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨n2, t⟩
FOCAL = ⟨t, n2⟩ Next state to expand: t (Assuming ϵ > 5

4)
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Bounded Suboptimal Planning: A∗
ϵ (Focal Search)
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g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) = ∞, g(t) = 5

h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨n2⟩
FOCAL = ⟨n2⟩ Next state to expand:
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Bounded Suboptimal Planning: A∗
ϵ (Focal Search)
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Bounded Suboptimal Planning: A∗
ϵ (Focal Search)
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What would change if ϵ ≤ 5
4?
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Anytime Planning

• Need to be able to (re-)plan in realtime

• Anytime planning: return best possible solution for a given time limit

Approach 0: Series of suboptimal planners

Execute a sequence of bounded suboptimal planners with decreasing ϵ

Main drawbacks: Inefficient (many states identical between iterations)
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Anytime Planning: Anytime Repairing A* (ARA*) [4]

• Add ge(v) for each vertex v : when expanding v , we set ge(v) = g(v)

• ARA* keeps track of ge(v) between iterations

• Initializes OPEN with states that fulfill ge(v) > g(v)

• Execute search weighted-A* only until f (vg ) > f (top(OPEN))

8



Incremental Planning

• Need to be able to react to changes in the graph

• Incremental planning: re-use previous search results by interleaving planning and

execution

D* Lite [5]

• Keep track of ge(v) between

iterations

• Special handling for the case where

edge cost increases (ge(v) < g(v))

Anytime D* [6]

• Mix of ARA* and D* Lite

• Interleave anytime planning and

execution
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State Lattices



Key Idea of State Lattices

Source: Maxim Likhachev
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http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/


How Does This Affect A*?

1 def Astar(G , d , vs , vg , h):

2 O = queue(vs)

3 while O ̸= ∅:
4 # smallest f-value

5 v = O.pop()

6 if v = vg:

7 return solution

8 for n in v.neighbor:

9 g = v.g + d(v, n)

10 if g < n.g:

11 O.add_or_update(n, g + h(n))

12 return None

Discussion
What changes are needed to use

state lattices?
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Motion Primitive

• A valid trajectory that obeys

robot dynamics

This is similar to the “kinodynamic

motion planning” definition, with-

out the cost function and free

workspace constraint!

In practice, we often like each

primitive to be (near)-optimal with

respect to some J.

Motion Primitive

A tuple ⟨T ,u(t),q(t)⟩, where T is the duration,

u : [0,T ) → U is the sequence of controls, and

q : [0,T ] → Q the sequence of configurations such

that:

q̇(t) = f(q(t),u(t)) ∀t ∈ [0,T ).

Thus, a motion primitive is specific to a given robot

type specified by the robot dynamics f.
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State Lattice (1)

• Discretize the configuration space Q using a lattice

• Example: Car, where x , y , θ is discretized

Source: [7]
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State Lattice (2)

State Lattice Motion Primitive
A motion primitive with the additional constraints:

q(0) ∈ Qd

q(T ) ∈ Qd ,

where Qd ⊂ Q is the discretized configuration space.
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Change 1: Neighbor Computation

1 def Astar(G , d , vs , vg , h):

2 O = queue(vs)

3 while O ̸= ∅:
4 # smallest f-value

5 v = O.pop()

6 if v = vg:

7 return solution

8 for n in v.neighbor:

9 g = v.g + d(v, n)

10 if g < n.g:

11 O.add_or_update(n, g + h(n))

12 return None

A neighbor of v is a state lattice

motion primitive such that:

• q(0) = v

• The resulting motion is

collision-free

Motion primitives are usually pre-

computed. Finding suitable can-

didates can be done efficiently

(O(1)) when using a hash map

data structure.
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Change 2: Validity Checking: Option 1

• Compute swept volume that is covered by motion

primitive

• Check for intersections with the obstacles

• Known as continuous collision checking in FCL

- Only works for linear motions out-of-the-box

- Swept volume can be difficult to compute

- Slow (requires collision check for each expansion)

+ Accurate
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Change 2: Validity Checking: Option 2

• Compute swept grid cells that are covered by motion

primitive

- Pessimistic approximation

+ Very efficient

Note: Both approaches can pre-compute the swept volumes
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Change 3: Cost and Heuristics (1)

• We need to assume an additive cost function

J(T ,u(t),q(t)) =
∑

⟨Ti ,ui (t),qi (t)⟩∈M

Ji (Ti ,ui (t),qi (t)),

where M are the primitives used for the solution

• Ji (·) is the cost for a motion primitive (can be precomputed)

• Heuristic needs to be admissible, i.e., never overestimate the true cost

Heuristic for minimal-time-cost

If Ji (Ti ,ui (t),qi (t)) = Ti and we have a first-order model with a maximum speed smax ,

an admissible heuristic is:

h(v) =
∥v − vg∥2

smax
.
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Change 3: Cost and Heuristics (2)

• Heuristic ideally uses strong knowledge of geometry (e.g., true shortest distance)

and dynamics

• Can be difficult to define for some cost functions (e.g., minimal-energy)
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Change 4: Use Implicit Graph Representation

Implicit graph search

1. Initialize start state s

2. Define successor function Γ

3. Search graph by expanding the next best node
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Theoretical Properties

A* is complete, optimal (admissible), and optimal efficient

Discussion
Do these properties hold for planning on state lattices?

• Interpretation 1: Planning on state lattices retains these properties with respect to
the discretization (choice of motion primitives)

• In the limit (infinite many primitives) the properties hold for the continuous problem

• Interpretation 2: Approach is incomplete (limit case not practical)
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Practical Challenges: Compute Motion Primitives

• Assume q(0), q(T ) are selected

• The motion primitive computation, becomes a “small” kinodynamic motion
planning problem itself

• Often termed Two-Value Boundary Problem (TVBP)

• Can be solved with any other kinodynamic motion planner

• Frequently used: optimization-based approaches (part 4 of this class) or domain

knowledge
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Practical Challenges: Select Motion Primitives

• What is a good discretization schema for the lattice?

• Try to identify symmetries and invariances (e.g., translation-invariance)

• Domain expert approach: manually select based on robot and environment

• Data-driven approach: use near-optimal examples to identify recurring motions (e.g.,

maximum acceleration in a straight line)
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Practical Challenges: Scalability

State Lattices scale poorly

The number of primitives grows exponential with the number of states.

Examples and more details in exercise 4!

• Successful application for up to 12-dim state spaces

• Often requires careful tuning and expert knowledge
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Case Studies



DARPA Urban Challenge (2007) [8]

• Competition for autonomous vehicle to operate in urban environment

• The team that won used a search-based motion planner
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DARPA Urban Challenge (2007) [8]

• State space: (x , y , θ, v) (position, orientation, and speed)

• Multi-resolution lattice-graph

• Anytime D* to search (anytime and incrementally)
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DARPA Urban Challenge (2007) [8]

• Heuristic h(v) = max(hmech(v), henv (v))
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Video

https://youtu.be/4hFhl0Oi8KI
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https://youtu.be/4hFhl0Oi8KI


Aggressive Quadrotor Flight (2018) [9]

• Goal: plan motions to fly through narrow gap

• Motion primitive generation: Quadrotors allow solving the two-value boundary

problem efficiently (Domain knowledge)
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Aggressive Quadrotor Flight (2018) [9]

• Heuristic and Dimensionality: Use a hierarchical approach:
1. Compute a solution in a low-dimensional state space (e.g., first-order model)

2. Add a dimension to the state space (e.g., second-order model)

3. Use first solution as heuristic
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Video

https://youtu.be/V4Mha-KPtwc
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https://youtu.be/V4Mha-KPtwc


SBPL: Search-based Planning

Library



Overview

• Open-Source, cross-platform C++ library: https://github.com/sbpl/sbpl

• Two parts:

1. Graph Search (ARA*, Anytime D*)

2. Environments (x , y , θ-lattice; manipulator)

• Some integration in the Robot Operating System (ROS)

• Heuristic/cost function: shortest path

• Motion primitives: examples for unicycle (MATLAB scripts)
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https://github.com/sbpl/sbpl


Demo
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Pros and Cons

+ Very fast

+ Implementation of advanced search-

based planners

+ Used in ROS and MoveIt

- Very difficult to define new environments

- Very difficult to use custom set of motion

primitives

- Not very active
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Conclusion

A* Variants
• Anytime planning for realtime

operation (wA*, focal search)

• Incremental for dynamic

environments (ARA*)

State Lattices
• Enable kinodynamic planning

• Can re-use existing search-based planners

• Strong theoretical guarantees (up to

discretization)

• Difficult to use for high-dimensional

systems

Next Time
• Beginning of Part 3: Sampling-based Planning
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Suggested Reading

1. Maxim Likhachev. Planning and Decision-making in Robotics. 2021. url:

http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/, Slide decks 5 and 6

2. Maxim Likhachev. SBPL Tutorials. url: http://sbpl.net/Tutorials
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