
Motion Planning

Advanced Search-Based Motion Planning

Wolfgang Hönig (TU Berlin) and Andreas Orthey (Realtime Robotics)

May 15, 2024



Recap: A*

Input

• Weighted graph

G = (V, E) d : E → R

• Start vs ∈ V, Goal vg ∈ V
• admissible heuristic h : V → R

Output

optimal path in the graph; formally:

(v1, v2, . . . , vn) vi ∈ V (vi , vi+1) ∈ E
v1 = vs vn = vg

min
∑n−1

i=1 d((vi , vi+1))

Properties

• complete

• optimal /

admissible

• optimal efficient

Insight

Expansion using priority

queue ordered by

f (v) = g(v) + h(v)

Applications

• Route planner

• Robot navigation

• Computer games

A

vs

B C D E

vg

F

1



Challenges for Robot Motion Planning

Realtime operation in dy-

namic environments

Need to be able to react to

unforeseen changes quickly.

Non-Holonomic Robots

Source: New Venturist

Some robots cannot move in

a 4-connected grid.

Large Robots

Source: Örebro University

Grid-size needs to be at least

as large as the robot.

2

http://newventurist.com/2012/07/automation-is-now/
https://doi.org/10.14311/APP.2016.56.0047


Important A* Variants



Bounded Suboptimal Planning

• A* finds a solution and a proof of its optimality

• Sometimes the optimal solution is not needed

Bounded suboptimal planning

A solution is ϵ-optimal if its cost c is at most a factor of ϵ larger than the optimal cost

c∗:

c ≤ ϵc∗.

3



Bounded Suboptimal Planning: Weighted-A* (wA*) [2]

• A*: Expansion order

f (v) = g(v) + h(v)

• Weighted-A*: Expansion order

f (v) = g(v) + ϵh(v), where ϵ ≥ 1

• ϵ > 1: Bias towards states that seem

to be closer to goal

• Weighted-A* is ϵ-optimal and works

well in practice [1]

State expansions A* vs. Weighted-A*

4



Bounded Suboptimal Planning: A∗
ϵ (Focal Search) [3]

• FOCAL: subset of OPEN with f (v) at most ϵf (top(OPEN)) (up to a factor ϵ

larger than the smallest value in OPEN)

• FOCAL is a priority queue, sorted by an arbitrary heuristic function

• Search is identical to A*, but takes smallest element from FOCAL

• Focal search is ϵ-optimal

Example, where an inadmissible heuristic can be used!

5



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = ∞, g(n2) = ∞, g(n3) = ∞, g(n4) = ∞, g(t) = ∞
h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨⟩
FOCAL = ⟨⟩ Next state to expand:

6



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = ∞, g(n2) = ∞, g(n3) = ∞, g(n4) = ∞, g(t) = ∞
h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨s⟩
FOCAL = ⟨s⟩ Next state to expand: s

6



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = ∞, g(n3) = ∞, g(n4) = ∞, g(t) = ∞
h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨n1⟩
FOCAL = ⟨n1⟩ Next state to expand: n1

6



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) = ∞, g(t) = ∞
h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨n2, n3⟩
FOCAL = ⟨n3, n2⟩ Next state to expand: n3

6



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) = ∞, g(t) = 5

h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨n2, t⟩
FOCAL = ⟨t, n2⟩ Next state to expand: t (Assuming ϵ > 5

4)
6



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) = ∞, g(t) = 5

h(s) = 3, h(n1) = 2, h(n2) = 2, h(n3) = 1, h(n4) = 1, h(t) = 0

h2(s) = 0, h2(n1) = 10, h2(n2) = 100, h2(n3) = 1, h2(n4) = 2, h2(t) = 0

OPEN = ⟨n2⟩
FOCAL = ⟨n2⟩ Next state to expand:

6



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

6



Bounded Suboptimal Planning: A∗
ϵ (Focal Search)

ss

n1n1

n2n2

n3n3

n4n4

tt
1

1

2

3

1

2

What would change if ϵ ≤ 5
4?

6



Anytime Planning

• Need to be able to (re-)plan in realtime

• Anytime planning: return best possible solution for a given time limit

Approach 0: Series of suboptimal planners

Execute a sequence of bounded suboptimal planners with decreasing ϵ

Main drawbacks: Inefficient (many states identical between iterations)

7



Anytime Planning: Anytime Repairing A* (ARA*) [4]

• Add ge(v) for each vertex v : when expanding v , we set ge(v) = g(v)

• ARA* keeps track of ge(v) between iterations

• Initializes OPEN with states that fulfill ge(v) > g(v)

• Execute search weighted-A* only until f (vg ) > f (top(OPEN))

8



Incremental Planning

• Need to be able to react to changes in the graph

• Incremental planning: re-use previous search results by interleaving planning and

execution

D* Lite [5]

• Keep track of ge(v) between

iterations

• Special handling for the case where

edge cost increases (ge(v) < g(v))

Anytime D* [6]

• Mix of ARA* and D* Lite

• Interleave anytime planning and

execution

9



State Lattices



Key Idea of State Lattices

Source: Maxim Likhachev
10

http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/


How Does This Affect A*?

1 def Astar(G , d , vs , vg , h):

2 O = queue(vs)

3 while O ̸= ∅:
4 # smallest f-value

5 v = O.pop()

6 if v = vg:

7 return solution

8 for n in v.neighbor:

9 g = v.g + d(v, n)

10 if g < n.g:

11 O.add_or_update(n, g + h(n))

12 return None

Discussion
What changes are needed to use

state lattices?

11



Motion Primitive

• A valid trajectory that obeys

robot dynamics

This is similar to the “kinodynamic

motion planning” definition, with-

out the cost function and free

workspace constraint!

In practice, we often like each

primitive to be (near)-optimal with

respect to some J.

Motion Primitive

A tuple ⟨T ,u(t),q(t)⟩, where T is the duration,

u : [0,T ) → U is the sequence of controls, and

q : [0,T ] → Q the sequence of configurations such

that:

q̇(t) = f(q(t),u(t)) ∀t ∈ [0,T ).

Thus, a motion primitive is specific to a given robot

type specified by the robot dynamics f.

12



State Lattice (1)

• Discretize the configuration space Q using a lattice

• Example: Car, where x , y , θ is discretized

Source: [7]

13



State Lattice (2)

State Lattice Motion Primitive
A motion primitive with the additional constraints:

q(0) ∈ Qd

q(T ) ∈ Qd ,

where Qd ⊂ Q is the discretized configuration space.

14



Change 1: Neighbor Computation

1 def Astar(G , d , vs , vg , h):

2 O = queue(vs)

3 while O ̸= ∅:
4 # smallest f-value

5 v = O.pop()

6 if v = vg:

7 return solution

8 for n in v.neighbor:

9 g = v.g + d(v, n)

10 if g < n.g:

11 O.add_or_update(n, g + h(n))

12 return None

A neighbor of v is a state lattice

motion primitive such that:

• q(0) = v

• The resulting motion is

collision-free

Motion primitives are usually pre-

computed. Finding suitable can-

didates can be done efficiently

(O(1)) when using a hash map

data structure.

15



Change 2: Validity Checking: Option 1

• Compute swept volume that is covered by motion

primitive

• Check for intersections with the obstacles

• Known as continuous collision checking in FCL

- Only works for linear motions out-of-the-box

- Swept volume can be difficult to compute

- Slow (requires collision check for each expansion)

+ Accurate

16



Change 2: Validity Checking: Option 2

• Compute swept grid cells that are covered by motion

primitive

- Pessimistic approximation

+ Very efficient

Note: Both approaches can pre-compute the swept volumes

17



Change 3: Cost and Heuristics (1)

• We need to assume an additive cost function

J(T ,u(t),q(t)) =
∑

⟨Ti ,ui (t),qi (t)⟩∈M

Ji (Ti ,ui (t),qi (t)),

where M are the primitives used for the solution

• Ji (·) is the cost for a motion primitive (can be precomputed)

• Heuristic needs to be admissible, i.e., never overestimate the true cost

Heuristic for minimal-time-cost

If Ji (Ti ,ui (t),qi (t)) = Ti and we have a first-order model with a maximum speed smax ,

an admissible heuristic is:

h(v) =
∥v − vg∥2

smax
.

18



Change 3: Cost and Heuristics (2)

• Heuristic ideally uses strong knowledge of geometry (e.g., true shortest distance)

and dynamics

• Can be difficult to define for some cost functions (e.g., minimal-energy)

19



Change 4: Use Implicit Graph Representation

Implicit graph search

1. Initialize start state s

2. Define successor function Γ

3. Search graph by expanding the next best node

20



Theoretical Properties

A* is complete, optimal (admissible), and optimal efficient

Discussion
Do these properties hold for planning on state lattices?

• Interpretation 1: Planning on state lattices retains these properties with respect to
the discretization (choice of motion primitives)

• In the limit (infinite many primitives) the properties hold for the continuous problem

• Interpretation 2: Approach is incomplete (limit case not practical)

21



Practical Challenges: Compute Motion Primitives

• Assume q(0), q(T ) are selected

• The motion primitive computation, becomes a “small” kinodynamic motion
planning problem itself

• Often termed Two-Value Boundary Problem (TVBP)

• Can be solved with any other kinodynamic motion planner

• Frequently used: optimization-based approaches (part 4 of this class) or domain

knowledge

22



Practical Challenges: Select Motion Primitives

• What is a good discretization schema for the lattice?

• Try to identify symmetries and invariances (e.g., translation-invariance)

• Domain expert approach: manually select based on robot and environment

• Data-driven approach: use near-optimal examples to identify recurring motions (e.g.,

maximum acceleration in a straight line)

23



Practical Challenges: Scalability

State Lattices scale poorly

The number of primitives grows exponential with the number of states.

Examples and more details in exercise 4!

• Successful application for up to 12-dim state spaces

• Often requires careful tuning and expert knowledge

24



Case Studies



DARPA Urban Challenge (2007) [8]

• Competition for autonomous vehicle to operate in urban environment

• The team that won used a search-based motion planner

25



DARPA Urban Challenge (2007) [8]

• State space: (x , y , θ, v) (position, orientation, and speed)

• Multi-resolution lattice-graph

• Anytime D* to search (anytime and incrementally)

26



DARPA Urban Challenge (2007) [8]

• Heuristic h(v) = max(hmech(v), henv (v))

27



Video

https://youtu.be/4hFhl0Oi8KI

28

https://youtu.be/4hFhl0Oi8KI


Aggressive Quadrotor Flight (2018) [9]

• Goal: plan motions to fly through narrow gap

• Motion primitive generation: Quadrotors allow solving the two-value boundary

problem efficiently (Domain knowledge)

29



Aggressive Quadrotor Flight (2018) [9]

• Heuristic and Dimensionality: Use a hierarchical approach:
1. Compute a solution in a low-dimensional state space (e.g., first-order model)

2. Add a dimension to the state space (e.g., second-order model)

3. Use first solution as heuristic

30



Video

https://youtu.be/V4Mha-KPtwc

31

https://youtu.be/V4Mha-KPtwc


SBPL: Search-based Planning

Library



Overview

• Open-Source, cross-platform C++ library: https://github.com/sbpl/sbpl

• Two parts:

1. Graph Search (ARA*, Anytime D*)

2. Environments (x , y , θ-lattice; manipulator)

• Some integration in the Robot Operating System (ROS)

• Heuristic/cost function: shortest path

• Motion primitives: examples for unicycle (MATLAB scripts)

32

https://github.com/sbpl/sbpl


Demo

33



Pros and Cons

+ Very fast

+ Implementation of advanced search-

based planners

+ Used in ROS and MoveIt

- Very difficult to define new environments

- Very difficult to use custom set of motion

primitives

- Not very active

34



Conclusion

A* Variants
• Anytime planning for realtime

operation (wA*, focal search)

• Incremental for dynamic

environments (ARA*)

State Lattices
• Enable kinodynamic planning

• Can re-use existing search-based planners

• Strong theoretical guarantees (up to

discretization)

• Difficult to use for high-dimensional

systems

Next Time
• Beginning of Part 3: Sampling-based Planning

35



Suggested Reading

1. Maxim Likhachev. Planning and Decision-making in Robotics. 2021. url:

http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/, Slide decks 5 and 6

2. Maxim Likhachev. SBPL Tutorials. url: http://sbpl.net/Tutorials

36

http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/
http://sbpl.net/Tutorials


References i

[1] Christopher Makoto Wilt and Wheeler Ruml. “When Does Weighted A* Fail?”

In: Symposium on Combinatorial Search, SOCS. 2012. url:

http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5413.

[2] Ira Pohl. “Heuristic Search Viewed as Path Finding in a Graph”. In: Artif. Intell.

1.3 (1970), pp. 193–204. doi: 10.1016/0004-3702(70)90007-X.

[3] Judea Pearl and Jin H. Kim. “Studies in Semi-Admissible Heuristics”. In: IEEE

Trans. Pattern Anal. Mach. Intell. 4.4 (1982), pp. 392–399. doi:

10.1109/TPAMI.1982.4767270.

http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5413
https://doi.org/10.1016/0004-3702(70)90007-X
https://doi.org/10.1109/TPAMI.1982.4767270


References ii

[4] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. “ARA*: Anytime

A* with Provable Bounds on Sub-Optimality”. In: Neural Information Processing

Systems Conference (NIPS). MIT Press, 2004, pp. 767–774. url:

http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-

bounds-on-sub-optimality.pdf.

[5] S. Koenig and M. Likhachev. “Fast Replanning for Navigation in Unknown

Terrain”. In: IEEE Transactions on Robotics 21.3 (June 2005), pp. 354–363.

issn: 1941-0468. doi: 10.1109/TRO.2004.838026.

[6] Maxim Likhachev, Dave Ferguson, Geoffrey J. Gordon, Anthony Stentz, and

Sebastian Thrun. “Anytime search in dynamic graphs”. In: Artif. Intell. 172.14

(2008), pp. 1613–1643. doi: 10.1016/j.artint.2007.11.009.

http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf
http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf
https://doi.org/10.1109/TRO.2004.838026
https://doi.org/10.1016/j.artint.2007.11.009


References iii

[7] M. Pivtoraiko and A. Kelly. “Generating near Minimal Spanning Control Sets for

Constrained Motion Planning in Discrete State Spaces”. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems. 2005,

pp. 3231–3237. doi: 10.1109/IROS.2005.1545046.

[8] Dave Ferguson, Thomas M. Howard, and Maxim Likhachev. “Motion planning in

urban environments”. In: J. Field Robotics 25.11-12 (2008), pp. 939–960. doi:

10.1002/rob.20265.

[9] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. “Search-Based

Motion Planning for Aggressive Flight in SE(3)”. In: IEEE Robotics and

Automation Letters 3.3 (July 2018), pp. 2439–2446. issn: 2377-3766. doi:

10.1109/LRA.2018.2795654.

https://doi.org/10.1109/IROS.2005.1545046
https://doi.org/10.1002/rob.20265
https://doi.org/10.1109/LRA.2018.2795654


References iv

[10] Maxim Likhachev. Planning and Decision-making in Robotics. 2021. url:

http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/.

[11] Maxim Likhachev. SBPL Tutorials. url: http://sbpl.net/Tutorials.

http://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/
http://sbpl.net/Tutorials

	Important A* Variants
	State Lattices
	Case Studies
	SBPL: Search-based Planning Library
	Appendix

