Motion Planning Lecture 3

Graph-based Planning: Representations, A*, Admissible heuristics

Wolfgang Hönig (TU Berlin) and Andreas Orthey (Realtime Robotics) May 8, 2024

- How to model configuration spaces of arbitrary robots: Topological spaces
- How to measure distances: Metric spaces
- How to make your robot do the right thing: Constraints and collision checking

Today

- Building graphs: Find representations of configuration space
- A* algorithm: Optimal paths over graphs and optimality proof
- Admissible heuristics: How to better inform graph search

[Graph-based planning: Motivation](#page-2-0)

Main Idea

Any robot can be modelled as a point in a configuration space (Paper by Lozano-Pérez and Wesley [\[1\]](#page-101-0) (1979)).

(Geometric) Motion Planning Problem

Requirements

- A configuration space Q
- Constraints to distinguish Q_{free} and Q_{obs}
- An initial configuration $\mathbf{q}_{start} \in \mathcal{Q}_{free}$
- A goal configuration $\mathbf{q}_{goal} \in \mathcal{Q}_{free}$

Outcome

- A collision free sequence $\mathbf{q} : [0, 1] \to \mathcal{Q}_{\text{free}}$ such that $\mathbf{q}(0) = \mathbf{q}_{start}$ and $\mathbf{q}(1) = \mathbf{q}_{goal}$.
- Complete algorithm: Find a sequence $q(\cdot)$ if one exists, or report that no such path exists.

Standard two-step approach:

- (1) Find a representation of the configuration space
- (2) Use representation to compute a path

Mapping-based approach.

Cover-based approach.

Mapping-based approach.

- (1) Map all obstacles into the configuration space and decompose space into cells
- (2) Find an optimal solution by connecting cells

Robot Motion Planning (1991) by Jean-Claude Latombe

Cover-based approach.

Solving (Geometric) Motion Planning Problems

Left: Robot (red) and obstacle (grey). Right: Configuration space; each polygon is Minkowski sum of robot and obstacle at fixed orientation.

Cover-based approach.

Graph-based approach. The state of the s

Mapping-based approach.

Cover-based approach.

- (1) Find open sets covering the configuration space
- (2) Find an optimal solution by connecting open sets

Computing a Composition of Funnels (LaValle, Planning Algorithms, 2006) [http://](http://lavalle.pl/planning/node400.html) lavalle.pl/planning/node400.html

Solving (Geometric) Motion Planning Problems

Mapping-based approach.

Cover-based approach.

Mapping-based approach.

Cover-based approach.

- (1) Find a graph of configurations capturing the essence of $\mathcal{Q}_{\text{free}}$
- (2) Find an optimal solution using graph search algorithms

Difference

- Difficult to map configuration space if dimension > 4
- Graph-based outperforms mapping-based and cover-based almost everywhere
- We concentrate here exclusively on the graph-based approach

[Graph-based Motion Planning](#page-13-0)

Graph-based Motion Planning

- (1) Find a graph of configurations capturing the essence of Q_{free}
- (2) Find an optimal solution using graph search algorithms

Variants of Graphs

- Graph representation in memory (explicit vs implicit)
- Graph construction (skeletons vs cell decomposition)

[Graph-based Motion Planning](#page-13-0)

[Graph Representations: Explicit vs Implicit](#page-16-0)

Graph Representation

How we store a graph.

- Explicit graphs: Construct graph (explicitly) in memory, then search over it
- Implicit graphs: Initialize start state, then define successor function

Explicit Graph

Explicit graph search

- (1) Create a graph $G = (V, E)$ in memory
- (2) Search graph G

Implicit Graph

Implicit graph search

- \bullet (1) Initialize start state s
- (2) Define successor function Γ
- (2) Search graph by expanding the next best node

Advantages Explicit Graphs

Disadvantages Explicit Graphs

Advantages Explicit Graphs

- Graphs construction can be computationally expensive
- Fast search (successor function is just a look-up)

Disadvantages Explicit Graphs

- Does not work in infinite spaces
- High memory usage

[Graph-based Motion Planning](#page-13-0)

[Graph Construction: Skeletons vs Cell](#page-22-0) [Decomposition](#page-22-0)

There are multiple ways to construct graphs

- Skeletonization (From topological skeleton)
	- Visibility Graph
	- Voronoi Diagram
	- Roadmap
	- Random Tree
- Cell decomposition
	- X-connected grids
	- Lattice-based graphs

[Graph-based Motion Planning](#page-13-0)

[Visibility Graph](#page-24-0)

Skeletonization: Visibility Graph

Visibility Graphs

• Idea: Shortest path consists of obstacle-free straight line segments connecting obstacle vertices and initial/goal configuration

Skeletonization: Visibility Graph

Visibility Graphs

• Construct graph by connecting all obstacle vertices $+$ start $+$ goal by straight-line segments (complexity: $O(m^2)$ with m number of vertices).

Advantages

• Independent of dimensionality of configuration space

Disadvantages

- Path might be too close to obstacle
- Cannot deal with non-distance cost
- Cannot deal with non-polygon obstacles
- Requires explicit configuration space obstacles

Voronoi Diagram

• Idea: Set of all points equidistant to two nearest obstacles (complexity: $O(m \log(m))$ with m number of vertices).

Voronoi Diagram

- Construct a graph: Edges as boundaries, vertices as intersection of boundaries
- Add start/goal vertex, and connect them to graph

Advantages

- Independent of dimensionality of configuration space
- Stays away from obstacles
- Works with obstacles represented as set of points

Disadvantages

- Can result in highly suboptimal paths
- Cannot deal with non-distance cost
- Hard to build/maintain in higher dimensions

Skeletonization: Probabilistic Roadmap

Probabilistic Roadmap

Idea: Sample random points in configuration space

Skeletonization: Probabilistic Roadmap

Probabilistic Roadmap

Idea: Sample random points in configuration space

Skeletonization: Probabilistic Roadmap

Probabilistic Roadmap

Idea: Sample random points in configuration space

Advantages

- Does not require configuration space obstacles (implicit)
- Can quickly discover connected components
- Works with arbitrarily shaped objects

Disadvantages

- Can sample irrelevant portions of configuration space
- Might take long time to find samples in constrained areas

Random Trees

Grow tree from start configuration, walk into random directions

Random Trees

Grow tree from start configuration, walk into random directions

X-connected grids

Add uniform grid onto configuration space (discretization)

X-connected Grids

Every grid cell in free space is a node, two nodes are connected if they are neighbors

- 4-connected: only horizontal/vertical connections (up to 4 neighbors per cell)
- 8-connected: allow diagonal connections (up to 8 neighbors per cell)

Advantages

- Simple to implement
- Can deal with arbitrarily shaped obstacles
- Works with any cost function

Disadvantages

• Scales badly with number of dimensions (10 dimensions, 100 discretizations per dimension $\Rightarrow 100^{10}$ grid cells)

Idea: Define nodes as transitions from previous nodes. Example: Use precomputed motion primitives to expand a node.

Idea: Define nodes as transitions from previous nodes. Use precomputed motion primitives to expand a node.

Next lecture!

Summary

- Mapping-, Cover-, Graph-based
- Graph representation (Explicit vs Implicit)
- Graph construction (Skeletonization vs Cells)

- Uninformed search
	- Depth-first search (DFS)
	- Breadth-first search (BFS)
	- Dijkstra
- Uses current path cost, but no estimate of distance to goal

Berlin to Tokyo

Idea: Inject domain knowledge into search algorithm.

Trade-off between computation time of this knowledge and runtime of search.

[A* Search](#page-62-0)

A* Algorithm

- Informed graph search algorithm
- Paper: "A formal basis for the heuristic determination of minimum cost paths", by PE Hart, NJ Nilsson, B Raphael (1968), Cited by 15300 (google scholar, 05/2024).

A*: Main properties

- Complete: Finds the solution of one exists (and report if none exists)
- Optimal: Finds the solution with the lowest cost
- Optimal efficient: No other algorithm can search better, given the heuristic function

Lies at the foundation of almost every motion planning algorithm out there

A* Topics

- Notations and datastructures
- Pseudocode and example
- Proof of optimality

[A* Search](#page-62-0)

[Notations and Datastructures](#page-66-0)

Notations and Datastructures

- Graph $G = (V, E)$ with $V = \{n_i\}$, $E = \{e_{ii}\}\$ with costs c_{ii}
- Start node $s \in V$
- Goal node $t \in V$
- Successor function Γ , taking n_i as input and generating $\{(n_j, c_{ij})\}$
- Cost-to-go $h(n)$: Cost of optimal path from node *n* to t
- Cost-to-come $g(n)$: Cost of optimal path from s to node n
- Total cost $f(n) = g(n) + h(n)$: Cost of optimal path from s to t going through node n

Cost-to-come g

 $g(n)$: Cost of optimal path from s to n.

Cost-to-go h

 $h(n)$: Cost of optimal path from *n* to *t*.

Total cost f

 $f(n)$: Cost of optimal path from s to t, constrained by n.
A* Idea

- Cost terms h, f are unknown
- $\bullet\,$ Use estimate function $\hat{f}(n)=g(n)+\hat{h}(n)$
- $\hat{h}(n)$ is called the heuristic function needs to be consistent and/or admissible for optimality to hold

Consistent/Monotone Heuristic

$$
h(x) \leq h(y) + d(x, y)
$$

Admissible Heuristic

Never overestimate the cost to reach the goal, i.e.:

$$
\hat{h}(n)\leq h(n)
$$

Relationship admissible and consistent heuristics as part of exercise!

[A* Search](#page-62-0)

[A* Pseudocode and Example](#page-73-0)

Pseudocode A*

- OPEN = $\{s\}$, CLOSED = \emptyset
- While true:
	- 1. If OPEN is ∅: Exit with failure
	- 2. $n \leftarrow$ Remove minimal $\hat{f}(n)$ node from OPEN
	- 3. If n is goal node: Add n to CLOSED, construct path and exit with success.
	- 4. EXPANDNODE (n)

Pseudocode A*

- OPEN = $\{s\}$, CLOSED = \emptyset
- While true:
	- 1. If OPEN is ∅: Exit with failure
	- 2. $n \leftarrow$ Remove minimal $\hat{f}(n)$ node from OPEN
	- 3. If n is goal node: Add n to CLOSED, construct path and exit with success.
	- 4 Add n to CLOSED

For each n' in SUCCESSORS(n):

- \bullet If n' is in closed: continue
- $s = g(n) + c(n, n')$
- If $s < g(n')$:
- \bullet g(n') = s
- $f(n') = g(n') + h(n')$
- \bullet If n' is in OPEN:
- \bullet Update n' in OPEN
- Else:
- \bullet Add n' to OPEN

$$
g(s) = 0, g(n_1) = \infty, g(n_2) = \infty, g(n_3) = \infty, g(n_4) = \infty, g(t) = \infty
$$

\n
$$
\hat{h}(s) = 3, \hat{h}(n_1) = 2, \hat{h}(n_2) = 2, \hat{h}(n_3) = 1, \hat{h}(n_4) = 1, \hat{h}(t) = 0
$$

\n**IDENTIFY and SET UP:** Next state to expand:

$$
g(s) = 0, g(n_1) = \infty, g(n_2) = \infty, g(n_3) = \infty, g(n_4) = \infty, g(t) = \infty
$$

\n
$$
\hat{h}(s) = 3, \hat{h}(n_1) = 2, \hat{h}(n_2) = 2, \hat{h}(n_3) = 1, \hat{h}(n_4) = 1, \hat{h}(t) = 0
$$

\n**OREN** = {s} Next state to expand: s

$$
g(s) = 0, g(n_1) = 1, g(n_2) = \infty, g(n_3) = \infty, g(n_4) = \infty, g(t) = \infty
$$

\n
$$
\hat{h}(s) = 3, \hat{h}(n_1) = 2, \hat{h}(n_2) = 2, \hat{h}(n_3) = 1, \hat{h}(n_4) = 1, \hat{h}(t) = 0
$$

\n
$$
OPEN = \{n_1\}
$$

\nNext state to expand: n_1

$$
g(s) = 0, g(n_1) = 1, g(n_2) = 2, g(n_3) = 3, g(n_4) = \infty, g(t) = \infty
$$

\n
$$
\hat{h}(s) = 3, \hat{h}(n_1) = 2, \hat{h}(n_2) = 2, \hat{h}(n_3) = 1, \hat{h}(n_4) = 1, \hat{h}(t) = 0
$$

\n
$$
OPEN = \{n_2, n_3\}
$$

\nNext state to expand: n_3

$$
g(s) = 0, g(n_1) = 1, g(n_2) = 2, g(n_3) = 3, g(n_4) = \infty, g(t) = 5
$$

\n
$$
\hat{h}(s) = 3, \hat{h}(n_1) = 2, \hat{h}(n_2) = 2, \hat{h}(n_3) = 1, \hat{h}(n_4) = 1, \hat{h}(t) = 0
$$

\n
$$
OPEN = \{n_2, t\}
$$

\nNext state to expand: n_2

$$
g(s) = 0, g(n_1) = 1, g(n_2) = 2, g(n_3) = 3, g(n_4) = 5, g(t) = 5
$$

\n
$$
\hat{h}(s) = 3, \hat{h}(n_1) = 2, \hat{h}(n_2) = 2, \hat{h}(n_3) = 1, \hat{h}(n_4) = 1, \hat{h}(t) = 0
$$

\n
$$
OPEN = \{t, n_4\}
$$

\nNext state to expand: t

$$
g(s) = 0, g(n_1) = 1, g(n_2) = 2, g(n_3) = 3, g(n_4) = 5, g(t) = 5
$$

\n
$$
\hat{h}(s) = 3, \hat{h}(n_1) = 2, \hat{h}(n_2) = 2, \hat{h}(n_3) = 1, \hat{h}(n_4) = 1, \hat{h}(t) = 0
$$

\nOFEN = { n_4 }
\nNext state to expand:

[Optimality of A*](#page-83-0)

Properties of A*

- A* is complete and optimal (it will return the optimal path, if one exists) (sometimes also termed admissible)
- A* is optimal efficient (it performs the minimal number of state expansions)

Let us prove, that A^{*} is complete and optimal (it is guaranteed to find an optimal path from s to t if one exists).

- Lemma 1: A* maintains always a node in OPEN, which lies on optimal path.
- Lemma 2: If h is admissible, then A^* always maintains a node which underestimates the evaluation cost f .
- Theorem: If h is admissible, then A^* is complete and optimal.

Lemma 1

 A^* always maintains at least one node from optimal path P in OPEN.

Lemma 1

There exist *always* a node n' on an optimal path P in OPEN with $\hat{g}(n')=g(n')$ (if one exists).

Proof

Let
$$
P = \{s = n_0, n_1, \ldots, n_k = t\}
$$
 be an optimal path.

Case 1: s is in OPEN. Then $\hat{g}(s) = g(s) = 0$ and $n' = s$ is an open node on P. Case 2: If s is not in OPEN. Let Δ be all nodes in CLOSED lying on P, and let n be the largest index of them. Since n is in CLOSED, it has (1) been expanded, and (2) there exists a successor node n' on P which is in OPEN. Therefore $\hat{g}(n')=g(n').$ \Box

Lemma 2

If $\hat{h}(n') \leq h(n)$ (admissible heuristic), then there exist *always* a node n' on an optimal path P in OPEN with $\hat{f}(n') \leq f(s)$.

Proof

By Lemma 1, there exists an open node n' on P, such that $\hat{g}(n') = g(n')$. By definition \int_{Ω} f \hat{f} .

$$
\hat{f}(n') = \hat{g}(n') + \hat{h}(n')
$$
 (by Definition)
= $g(n') + \hat{h}(n')$ (by Lemma 1)
 $\leq g(n') + h(n')$ (by Admissibility)
= $f(n') = f(s)$ (Since n' is on P)

Therefore $\hat{f}(n') \leq f(s)$.

Theorem 1

If $\hat{h}(n') \leq h(n)$ (admissible heuristic), A* is admissible. ^a

^aAn algorithm is admissible, if it is guaranteed to find an optimal solution if one exists.

Proof

Proof by contradiction. Assumption: There exists an optimal path and A* terminates, but A* does NOT find the optimal path.

- A* terminates at non-goal node: Cannot happen, since we terminate at a goal node by definition.
- A* terminates at goal node, but along non-optimal path.

(1) Assume A* terminates at goal node t but $\hat{f}(t) = \hat{g}(t) > f(s)$.

(2) But, by Lemma 2, before termination, there must have been n' in open, such that $\hat{f}(n') \leq f(s) < \hat{f}(t)$.

(3) Then, by definition, A^* would have expanded n' , not terminated at t. A \Box 67

Optimal and Complete

 A^* is admissible: It will find the optimal solution if it exists.

Best Informed Search

 A^* is also optimal in another sense: It will expand the least amount of nodes (proof, see Hart, Nilsson, and Raphael (1968)).

Advantage of A*

There is (provably) no better algorithm with respect to the knowledge available (i.e. the admissible heuristic).

[Admissible Heuristics](#page-92-0)

- Admissible heuristics is a cost-to-go estimate, which always underestimates real cost-to-go
- Similar to lower bounds in optimization
- Allows us to prune away many nodes in a search problem (while guaranteeing optimality!)

But: How do we actually find admissible heuristics?

"Admissible heuristics as solutions to simplified problems" —Judea Pearl - Heuristics (1984)

• Solution to relaxed problem (less constraints)

"Admissible heuristics as solutions to simplified problems"

—Judea Pearl - Heuristics (1984)

• Example: Shrink obstacles

"A method of progressive constraints for manipulation planning", Ferbach and Barraquand (1997)

"Admissible heuristics as solutions to simplified problems" —Judea Pearl - Heuristics (1984)

• Example: Remove joints (multilevel motion planning)

"Admissible heuristics as solutions to simplified problems"

—Judea Pearl - Heuristics (1984)

• Example: Precompute obstacle motions (Factored state spaces)

"Solving Rearrangement Puzzles using Path Defragmentation in Factored State Spaces", Bayraktar et al. (2023)

Summary

- Finding good representations of configuration space
	- Explicit vs Implicit graphs
	- Skeletons vs Cell decomposition
- A* to search over graphs
- Optimality proof of A* search
- Admissible heuristics
- Representations, Informed search, and A* https://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/ (Maxim Likhachev)
- A* paper (Hart, Nilsson, and Raphael, 1968)
- Admissible heuristics (Pearl, 1984)

References i

- [1] Tomás Lozano-Pérez and Michael A. Wesley. "An Algorithm for Planning Collision-Free Paths among Polyhedral Obstacles". In: Commun. ACM 22.10 (Oct. 1979), pp. 560–570. issn: 0001-0782. doi: [10.1145/359156.359164](https://doi.org/10.1145/359156.359164).
- [2] Peter E Hart, Nils J Nilsson, and Bertram Raphael. "A formal basis for the heuristic determination of minimum cost paths". In: IEEE transactions on Systems Science and Cybernetics 4.2 (1968), pp. 100–107.
- [3] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. 1984.
- [4] Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006. ISBN: 978-0-521-86205-9. url: <http://planning.cs.uiuc.edu>.