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Recap Last Week

• How to model configuration spaces of arbitrary robots: Topological spaces

• How to measure distances: Metric spaces

• How to make your robot do the right thing: Constraints and collision checking

Today

• Building graphs: Find representations of configuration space

• A* algorithm: Optimal paths over graphs and optimality proof

• Admissible heuristics: How to better inform graph search
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Graph-based planning: Motivation



(Geometric) Motion Planning Problem

Main Idea

Any robot can be modelled as a point in a configuration space (Paper by Lozano-Pérez

and Wesley [1] (1979)).

The Motion Planning Problem
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(Geometric) Motion Planning Problem

Requirements

• A configuration space Q
• Constraints to distinguish Qfree and Qobs

• An initial configuration qstart ∈ Qfree

• A goal configuration qgoal ∈ Qfree

Outcome

• A collision free sequence q : [0, 1]→ Qfree

such that q(0) = qstart and q(1) = qgoal .

• Complete algorithm: Find a sequence q(·) if
one exists, or report that no such path exists.
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Solving (Geometric) Motion Planning Problems

Standard two-step approach:

• (1) Find a representation of the configuration space

• (2) Use representation to compute a path
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Solving (Geometric) Motion Planning Problems

Mapping-based approach.

Cover-based approach.

Graph-based approach.
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Solving (Geometric) Motion Planning Problems

Mapping-based approach.

• (1) Map all obstacles into the configuration space and decompose space into cells

• (2) Find an optimal solution by connecting cells

Robot Motion Planning (1991) by Jean-Claude Latombe

Cover-based approach.

Graph-based approach.
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Solving (Geometric) Motion Planning Problems

Mapping-based approach.

Left: Robot (red) and obstacle (grey). Right: Configuration space; each polygon is Minkowski sum of robot and obstacle at fixed orientation.

Cover-based approach.

Graph-based approach.
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Solving (Geometric) Motion Planning Problems

Mapping-based approach.

Cover-based approach.

• (1) Find open sets covering the configuration space

• (2) Find an optimal solution by connecting open sets

Computing a Composition of Funnels (LaValle, Planning Algorithms, 2006) http://

lavalle.pl/planning/node400.html

Graph-based approach.
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Solving (Geometric) Motion Planning Problems

Mapping-based approach.

Cover-based approach.

Graph-based approach. 5



Solving (Geometric) Motion Planning Problems

Mapping-based approach.

Cover-based approach.

Graph-based approach.

• (1) Find a graph of configurations capturing the essence of Qfree

• (2) Find an optimal solution using graph search algorithms
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Difference

• Difficult to map configuration space if dimension ≥ 4

• Graph-based outperforms mapping-based and cover-based almost everywhere

• We concentrate here exclusively on the graph-based approach
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Graph-based Motion Planning



Graph-based Motion Planning

Graph-based Approach

• (1) Find a graph of configurations capturing the essence of Qfree

• (2) Find an optimal solution using graph search algorithms
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Graph-based Motion Planning

Variants of Graphs

• Graph representation in memory (explicit vs implicit)

• Graph construction (skeletons vs cell decomposition)
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Graph-based Motion Planning

Graph Representations: Explicit vs Implicit

9



Explicit vs Implicit Graphs

Graph Representation

How we store a graph.

• Explicit graphs: Construct graph (explicitly) in memory, then search over it

• Implicit graphs: Initialize start state, then define successor function
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Explicit Graph

Explicit graph search

• (1) Create a graph G = (V ,E ) in memory

• (2) Search graph G

11



Implicit Graph

Implicit graph search

• (1) Initialize start state s

• (2) Define successor function Γ

• (2) Search graph by expanding the next best node
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Graph Representations

Advantages Explicit Graphs

• Graphs construction can be computationally expensive

• Fast search (successor function is just a look-up)

Disadvantages Explicit Graphs

• Does not work in infinite spaces

• High memory usage

13



Graph Representations

Advantages Explicit Graphs

• Graphs construction can be computationally expensive

• Fast search (successor function is just a look-up)

Disadvantages Explicit Graphs

• Does not work in infinite spaces

• High memory usage
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Graph-based Motion Planning

Graph Construction: Skeletons vs Cell

Decomposition
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Graph Construction

There are multiple ways to construct graphs

• Skeletonization (From topological skeleton)

• Visibility Graph

• Voronoi Diagram

• Roadmap

• Random Tree

• Cell decomposition

• X-connected grids

• Lattice-based graphs
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Graph-based Motion Planning

Visibility Graph

16



Skeletonization: Visibility Graph

Visibility Graphs

• Idea: Shortest path consists of obstacle-free straight line segments connecting

obstacle vertices and initial/goal configuration
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Skeletonization: Visibility Graph

Visibility Graphs

• Construct graph by connecting all obstacle vertices + start + goal by

straight-line segments (complexity: O(m2) with m number of vertices).
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Skeletonization: Visibility Graph

Advantages

• Independent of dimensionality of configuration space

Disadvantages

• Path might be too close to obstacle

• Cannot deal with non-distance cost

• Cannot deal with non-polygon obstacles

• Requires explicit configuration space obstacles
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Skeletonization: Voronoi Diagram

Voronoi Diagram

• Idea: Set of all points equidistant to two nearest obstacles (complexity:

O(mlog(m)) with m number of vertices).
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Skeletonization: Voronoi Diagram

Voronoi Diagram

• Construct a graph: Edges as boundaries, vertices as intersection of boundaries

• Add start/goal vertex, and connect them to graph
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Skeletonization: Voronoi Diagram

Advantages

• Independent of dimensionality of configuration space

• Stays away from obstacles

• Works with obstacles represented as set of points

Disadvantages

• Can result in highly suboptimal paths

• Cannot deal with non-distance cost

• Hard to build/maintain in higher dimensions
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Skeletonization: Probabilistic Roadmap

Probabilistic Roadmap

Idea: Sample random points in configuration space
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Skeletonization: Probabilistic Roadmap

Probabilistic Roadmap

Idea: Sample random points in configuration space
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Skeletonization: Probabilistic Roadmap

Probabilistic Roadmap

Idea: Sample random points in configuration space
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Skeletonization: Probabilistic Roadmap

Advantages

• Does not require configuration space obstacles (implicit)

• Can quickly discover connected components

• Works with arbitrarily shaped objects

Disadvantages

• Can sample irrelevant portions of configuration space

• Might take long time to find samples in constrained areas
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Skeletonization: Random Tree

Random Trees

Grow tree from start configuration, walk into random directions
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Skeletonization: Random Tree

Random Trees

Grow tree from start configuration, walk into random directions

Future lecture!
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Cell Decomposition: X-connected Grids

X-connected grids

Add uniform grid onto configuration space (discretization)

28



Cell Decomposition: X-connected Grids

X-connected Grids

Every grid cell in free space is a node, two nodes are connected if they are neighbors

• 4-connected: only horizontal/vertical connections (up to 4 neighbors per cell)

• 8-connected: allow diagonal connections (up to 8 neighbors per cell)
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Skeletonization: X-connected Grids

Advantages

• Simple to implement

• Can deal with arbitrarily shaped obstacles

• Works with any cost function

Disadvantages

• Scales badly with number of dimensions (10 dimensions, 100 discretizations per

dimension ⇒ 10010 grid cells)
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Cell Decomposition: Lattice-based Graphs

Idea: Define nodes as transitions from previous nodes. Example: Use precomputed

motion primitives to expand a node.
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Cell Decomposition: Lattice-based Graphs
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Cell Decomposition: Lattice-based Graphs
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Cell Decomposition: Lattice-based Graphs
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Cell Decomposition: Lattice-based Graphs
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Cell Decomposition: Lattice-based Graphs

Idea: Define nodes as transitions from previous nodes. Use precomputed motion prim-

itives to expand a node.

Next lecture!
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Graph-based planning: Recap

Summary

• Mapping-, Cover-, Graph-based

• Graph representation (Explicit vs Implicit)

• Graph construction (Skeletonization vs Cells)

37



Graph Search



Graph Search

• Uninformed search

• Depth-first search (DFS)

• Breadth-first search (BFS)

• Dijkstra

• Uses current path cost, but no estimate of distance to goal
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Graph Search: Depth-first Search
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Graph Search: Depth-first Search
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Graph Search: Depth-first Search
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Graph Search: Depth-first Search
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Graph Search: Breadth-first Search
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Graph Search: Breadth-first Search
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Graph Search: Breadth-first Search
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Graph Search: Breadth-first Search

46



Graph Search
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Graph Search
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Graph Search
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Graph Search

50



Informed Graph Search

Idea: Inject domain knowledge into search algorithm.

Trade-off between computation time of this knowledge and runtime of search.
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A* Search



A* Algorithm

• Informed graph search algorithm

• Paper: ”A formal basis for the heuristic determination of minimum cost paths”,

by PE Hart, NJ Nilsson, B Raphael (1968), Cited by 15300 (google scholar,

05/2024).
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A*: Main properties

• Complete: Finds the solution of one exists (and report if none exists)

• Optimal: Finds the solution with the lowest cost

• Optimal efficient: No other algorithm can search better, given the heuristic

function

Lies at the foundation of almost every motion planning algorithm out there
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A* Topics

• Notations and datastructures

• Pseudocode and example

• Proof of optimality
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A* Search

Notations and Datastructures
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Notations and Datastructures

• Graph G = (V ,E ) with V = {ni}, E = {eij} with costs cij

• Start node s ∈ V

• Goal node t ∈ V

• Successor function Γ, taking ni as input and generating {(nj , cij)}

• Cost-to-go h(n): Cost of optimal path from node n to t

• Cost-to-come g(n): Cost of optimal path from s to node n

• Total cost f (n) = g(n) + h(n): Cost of optimal path from s to t going through

node n
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Cost-to-come g

g(n): Cost of optimal path from s to n.
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Cost-to-go h

h(n): Cost of optimal path from n to t.
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Total cost f

f (n): Cost of optimal path from s to t, constrained by n.
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A* Idea

• Cost terms h, f are unknown

• Use estimate function f̂ (n) = g(n) + ĥ(n)

• ĥ(n) is called the heuristic function — needs to be consistent and/or admissible

for optimality to hold

Consistent/Monotone Heuristic

h(x) ≤ h(y) + d(x , y)

Admissible Heuristic

Never overestimate the cost to reach the goal, i.e.:

ĥ(n) ≤ h(n)

Relationship admissible and consistent heuristics as part of exercise! 58



A* Search

A* Pseudocode and Example
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Pseudocode A*

• OPEN = {s}, CLOSED = ∅
• While true:

1. If OPEN is ∅: Exit with failure

2. n ← Remove minimal f̂ (n) node from OPEN

3. If n is goal node: Add n to CLOSED, construct path and exit with success.

4. ExpandNode(n)
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Pseudocode A*

• OPEN = {s}, CLOSED = ∅
• While true:

1. If OPEN is ∅: Exit with failure

2. n ← Remove minimal f̂ (n) node from OPEN

3. If n is goal node: Add n to CLOSED, construct path and exit with success.

4. Add n to CLOSED

For each n′ in Successors(n):

• If n′ is in closed: continue

• s = g(n) + c(n, n′)

• If s < g(n′):

• g(n′) = s

• f (n′) = g(n′) + h(n′)

• If n′ is in OPEN:

• Update n′ in OPEN

• Else:

• Add n′ to OPEN
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A* Example

s

n1

n2

n3

n4

t

1

1

2

3

1

2

g(s) = 0, g(n1) =∞, g(n2) =∞, g(n3) =∞, g(n4) =∞, g(t) =∞
ĥ(s) = 3, ĥ(n1) = 2, ĥ(n2) = 2, ĥ(n3) = 1, ĥ(n4) = 1, ĥ(t) = 0

OPEN = {} Next state to expand:
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A* Example

ss

n1

n2

n3

n4

t

1

1

2

3

1

2

g(s) = 0, g(n1) =∞, g(n2) =∞, g(n3) =∞, g(n4) =∞, g(t) =∞
ĥ(s) = 3, ĥ(n1) = 2, ĥ(n2) = 2, ĥ(n3) = 1, ĥ(n4) = 1, ĥ(t) = 0

OPEN = {s} Next state to expand: s
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A* Example

s

n1n1

n2

n3

n4

t

1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) =∞, g(n3) =∞, g(n4) =∞, g(t) =∞
ĥ(s) = 3, ĥ(n1) = 2, ĥ(n2) = 2, ĥ(n3) = 1, ĥ(n4) = 1, ĥ(t) = 0

OPEN = {n1} Next state to expand: n1
61



A* Example

s

n1

n2n2

n3n3

n4

t

1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) =∞, g(t) =∞
ĥ(s) = 3, ĥ(n1) = 2, ĥ(n2) = 2, ĥ(n3) = 1, ĥ(n4) = 1, ĥ(t) = 0

OPEN = {n2, n3} Next state to expand: n3
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A* Example

s

n1

n2n2

n3

n4

t

1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) =∞, g(t) = 5

ĥ(s) = 3, ĥ(n1) = 2, ĥ(n2) = 2, ĥ(n3) = 1, ĥ(n4) = 1, ĥ(t) = 0

OPEN = {n2, t} Next state to expand: n2
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A* Example

s

n1

n2

n3

n4n4

tt

1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) = 5, g(t) = 5

ĥ(s) = 3, ĥ(n1) = 2, ĥ(n2) = 2, ĥ(n3) = 1, ĥ(n4) = 1, ĥ(t) = 0

OPEN = {t, n4} Next state to expand: t
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A* Example

s

n1

n2

n3

n4n4

t

1

1

2

3

1

2

g(s) = 0, g(n1) = 1, g(n2) = 2, g(n3) = 3, g(n4) = 5, g(t) = 5

ĥ(s) = 3, ĥ(n1) = 2, ĥ(n2) = 2, ĥ(n3) = 1, ĥ(n4) = 1, ĥ(t) = 0

OPEN = {n4} Next state to expand:
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Optimality of A*



Properties of A*

• A* is complete and optimal (it will return the optimal path, if one exists)

(sometimes also termed admissible)

• A* is optimal efficient (it performs the minimal number of state expansions)
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Let us prove, that A* is complete and optimal (it is guaranteed to find an optimal path

from s to t if one exists).

• Lemma 1: A* maintains always a node in OPEN, which lies on optimal path.

• Lemma 2: If h is admissible, then A* always maintains a node which

underestimates the evaluation cost f .

• Theorem: If h is admissible, then A* is complete and optimal.
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Lemma 1

A* always maintains at least one node from optimal path P in OPEN.
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Lemma 1

There exist always a node n′ on an optimal path P in OPEN with ĝ(n′) = g(n′) (if one

exists).

Proof

Let P = {s = n0, n1, . . . , nk = t} be an optimal path.

Case 1: s is in OPEN. Then ĝ(s) = g(s) = 0 and n′ = s is an open node on P.

Case 2: If s is not in OPEN. Let ∆ be all nodes in CLOSED lying on P, and let n be

the largest index of them. Since n is in CLOSED, it has (1) been expanded, and (2)

there exists a successor node n′ on P which is in OPEN. Therefore ĝ(n′) = g(n′). □
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Lemma 2

If ĥ(n′) ≤ h(n) (admissible heuristic), then there exist always a node n′ on an optimal

path P in OPEN with f̂ (n′) ≤ f (s).

Proof

By Lemma 1, there exists an open node n′ on P, such that ĝ(n′) = g(n′). By definition

of f̂ :

f̂ (n′) = ĝ(n′) + ĥ(n′) (by Definition)

= g(n′) + ĥ(n′) (by Lemma 1)

≤ g(n′) + h(n′) (by Admissibility)

= f (n′) = f (s) (Since n′ is on P)

Therefore f̂ (n′) ≤ f (s). □
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Theorem 1

If ĥ(n′) ≤ h(n) (admissible heuristic), A* is admissible. a

aAn algorithm is admissible, if it is guaranteed to find an optimal solution if one exists.

Proof

Proof by contradiction. Assumption: There exists an optimal path and A* terminates,

but A* does NOT find the optimal path.

• A* terminates at non-goal node: Cannot happen, since we terminate at a goal

node by definition.

• A* terminates at goal node, but along non-optimal path.

(1) Assume A* terminates at goal node t but f̂ (t) = ĝ(t) > f (s).

(2) But, by Lemma 2, before termination, there must have been n′ in open, such

that f̂ (n′) ≤ f (s) < f̂ (t).

(3)Then, by definition, A* would have expanded n′, not terminated at t. A

contradiction. □ 67



Optimal and Complete

A* is admissible: It will find the optimal solution if it exists.

Best Informed Search

A* is also optimal in another sense: It will expand the least amount of nodes (proof,

see Hart, Nilsson, and Raphael (1968) ).
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Advantage of A*

There is (provably) no better algorithm with respect to the knowledge available (i.e.

the admissible heuristic).
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Admissible Heuristics



• Admissible heuristics is a cost-to-go estimate, which always underestimates real

cost-to-go

• Similar to lower bounds in optimization

• Allows us to prune away many nodes in a search problem (while guaranteeing

optimality!)

But: How do we actually find admissible heuristics?
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”Admissible heuristics as solutions to simplified problems”

—Judea Pearl - Heuristics (1984)

• Solution to relaxed problem (less constraints)
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”Admissible heuristics as solutions to simplified problems”

—Judea Pearl - Heuristics (1984)

• Example: Remove obstacles (free space assumption) (metric!)

71



”Admissible heuristics as solutions to simplified problems”

—Judea Pearl - Heuristics (1984)

• Example: Shrink obstacles

”A method of progressive constraints for manipulation planning”, Ferbach and Barraquand (1997)
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”Admissible heuristics as solutions to simplified problems”

—Judea Pearl - Heuristics (1984)

• Example: Remove joints (multilevel motion planning)

”Section Patterns: Efficiently Solving Narrow Passage Problems in Multilevel Motion Planning”, Orthey and Toussaint (2021)
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”Admissible heuristics as solutions to simplified problems”

—Judea Pearl - Heuristics (1984)

• Example: Precompute obstacle motions (Factored state spaces)

”Solving Rearrangement Puzzles using Path Defragmentation in Factored State Spaces”, Bayraktar et al. (2023)
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Conclusion

Summary

• Finding good representations of configuration space

• Explicit vs Implicit graphs

• Skeletons vs Cell decomposition

• A* to search over graphs

• Optimality proof of A* search

• Admissible heuristics
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Suggested Reading

• Representations, Informed search, and A*

https://www.cs.cmu.edu/~maxim/classes/robotplanning_grad/ (Maxim

Likhachev)

• A* paper (Hart, Nilsson, and Raphael, 1968)

• Admissible heuristics (Pearl, 1984)
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