
Quaternions for SO(3)

Wolfgang Hönig

October 31, 2024

1 Introduction

For rotations without singularities, rotation matrices and quaternions are common. The special orthogonal
group SO(3) is often defined using a constrained set of 3× 3 rotation matrices:

SO(3) = {R ∈ R3×3|R⊤R = RR⊤ = I ∧ detR = 1} (1)

Quaternions have the advantage of a lower memory requirement (4 floats vs. 9 in a rotation matrix),
often lower computational effort, and that their constraints are easier to fulfill when integrating (one norm
constraint rather than the two constraints above). This document summarizes the mathematical operations
for quaternions and provides useful references for derivations.

Notable implementations for quaternions are:
Python rowan
C++ Eigen, Sophus
C cmath3d

2 Definition

A quaternion for SO(3) is a 4D vector with the constraint to have norm 1:

q =

qw
qx
qy
qz

 =

(
qw
q⃗

)
∈ R4 s.t.∥q∥2 = 1 (2)

One can augment or promote a vector v ∈ R3 to be a quaternion:

v̄ =

(
0
v

)
(3)

One can extract the vector or imaginary part of a quaternion:

q⃗ = Im(q) (4)

Note that the order of the components is not uniquely defined. Some software packages put qw first, some
last in the vector.

3 Conversion

To Rotation Matrix :

R(q) =

q2w + q2x − q2y − q2z 2(qxqy − qwqz) 2(qwqy + qxqz)
2(qxqy + qwqz) q2w − q2x + q2y − q2z 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qwqx + qyqz) q2w − q2x − q2y + q2z

 (5)

4 Low-Level Operations

Negation (same as any vector):

−q =

−qw
−qx
−qy
−qz

 (6)

Note that q and −q represent the same rotation.

1

https://rowan.readthedocs.io
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/strasdat/Sophus
https://github.com/jpreiss/cmath3d

Addition, Substraction, Multiplication/Devision with Scalar (same as any vector, e.g.,):

q+ p =

qw + pw
qx + px
qy + py
qz + pz

 (7)

Conjugate

q∗ =

qw
−qx
−qy
−qz

 (8)

Note that this is the inverse for normalized quaternions.
Norm (regular L2 norm on the vector)

∥q∥ =
√

q2w + q2x + q2y + q2z (9)

Note that this should be always 1 for normalized quaternions.
Exponential

exp (q) = exp (qw)

(
cos (∥q⃗∥)
q⃗

∥q⃗∥ sin (∥q⃗∥)

)
(10)

Logarithm

ln (q) =

(
ln (∥q∥)

q⃗
∥q⃗∥ arccos

(
qw
∥q∥

))
(11)

Power with Real Number
qp = exp (ln(q)p) (12)

Power with Quaternion
qp = exp (ln(q)⊗ p) (13)

5 Useful Operations

Multiplication : Similar to rotation matrices, this can be used to concatenate rotations.

q⊗ p =

qwpw − qxpx − qypy − qzpz
qxpw + qwpx − qzpy + qypz
qypw + qzpx + qwpy − qxpz
qzpw − qypx + qxpy + qwpz

 (14)

Note that generally q⊗ p ̸= p⊗ q.
Vector Rotation With a rotation matrix R(q), we can rotate a vector v as vrotated = R(q)v. Similarily,

for quaternions we have:

vrotated = q⊙ v = Im(q⊗ v ⊗ q∗) (15)

(I.e., augment v to a quaternion, use two quaternion multiplications, and one conjugate, and then extract
the vector part of the result.)

6 Derivatives and Integration

Assuming ω ∈ R3 is the angular velocity in body frame (e.g., gyroscope):

q̇ =
1

2
q⊗ ω (16)

Assuming ω in world frame

q̇ =
1

2
ω ⊗ q (17)

This can also be used to numerically estimate ω. One can approximate q̇ ≈ (q(t + ∆t) − q(t))/∆t and
then proceed (remembering to use q∗ as inverse of q). A nicer solution can be derived to reach the following
(body frame)1:

ω ≈ 2 Im

(
q∗(t)⊗ q(t+∆t)

∆t

)
(18)

1See this math.stackexchange post for a derivation.

2

https://math.stackexchange.com/questions/2282938/converting-from-quaternion-to-angular-velocity-then-back-to-quaternion

Or similarly in world frame:

ω ≈ 2 Im

(
q(t+∆t)⊗ q∗(t)

∆t

)
(19)

For integration, one can use Euler or RK4 to integrate q, followed by normalizing the quaternion. Alter-
natively, the exponential map can be used as a more accurate, explicit integrator (body frame):

qt+∆t = qt ⊗
(

cos (∥ω∥∆t/2)
ω

∥ω∥ sin (∥ω∥∆t/2)

)
(20)

A derivation is in [2]. Note that some libraries do not specify which frame they operate in, e.g., the Python
library rowan assumes world frame for its methods.

7 Interpolation

If we want to linearly interpolate from a rotation q(0) to another rotation q(1), we can use the slerp

operation:
q(t) = (q(1)⊗ q(0)∗)

t ⊗ q(0) ∀t ∈ [0, 1] (21)

8 Metrics

A metric measures the difference between two rotations as a scalar value. A comparison of different metrics
is in [3]. Below are common metrics.

The following is metric 2 in [3] and sym distance in rowan:

d(q,p) = min (∥q− p∥, ∥q+ p∥) ∈ [0,
√
2] (22)

The following is metric 3 in [3], is is used by OMPL, and called sym intrinsic distance in rowan:

d(q,p) = arccos |q · p| ∈ [0, π/2] (23)

The following is metric 4 in [3]:
d(q,p) = 1− |q · p| ∈ [0, 1] (24)

9 Random Generation

Sampling rotations uniformly is not trivial. Here is one approach [5]:

r1, r2, r3 ∼ U(0, 1) (25)

q =

√
1− r1 sin 2πr2√
1− r1 cos 2πr2√
r1 sin 2πr3√
r1 cos 2πr3

 (26)

Note, this is also used inside OMPL.

References

[1] P. Y.-B. Jia. “Quaternions (Com S 477/577 Notes)”. 2024. url: https://faculty.sites.iastate.edu/jia/files/inline-
files/quaternion.pdf.

[2] D. A. Narayan. “How to Integrate Quaternions”. 2017. url: https://www.ashwinnarayan.com/post/how-to-integrate-
quaternions/.

[3] D. Q. Huynh. “Metrics for 3D Rotations: Comparison and Analysis”. In: Journal of Mathematical Imaging and Vision 35.2
(2009), pp. 155–164. doi: 10.1007/s10851-009-0161-2.

[4] P. S. Särkkä. “Notes on Quaternions”. 2007. url: https://users.aalto.fi/~ssarkka/pub/quat.pdf.

[5] K. Shoemake. “Uniform random rotations”. In: Graphics Gems III. USA, 1992, pp. 124–132. isbn: 0124096719.

3

https://github.com/ompl/ompl/blob/18a5f5bea1940a8b56369a58d3c20dac0d884d8b/src/ompl/base/spaces/src/SO3StateSpace.cpp#L258-L261
https://github.com/ompl/ompl/blob/18a5f5bea1940a8b56369a58d3c20dac0d884d8b/src/ompl/util/src/RandomNumbers.cpp#L263-L277
https://faculty.sites.iastate.edu/jia/files/inline-files/quaternion.pdf
https://faculty.sites.iastate.edu/jia/files/inline-files/quaternion.pdf
https://faculty.sites.iastate.edu/jia/files/inline-files/quaternion.pdf
https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/
https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/
https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/
http://dx.doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1007/s10851-009-0161-2
https://users.aalto.fi/~ssarkka/pub/quat.pdf
https://users.aalto.fi/~ssarkka/pub/quat.pdf

	Introduction
	Definition
	Conversion
	Low-Level Operations
	Useful Operations
	Derivatives and Integration
	Interpolation
	Metrics
	Random Generation
	References

