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Abstract

Probabilistically complete sampling-based motion planners like Rapidly Exploring Ran-
dom Trees (RRT) have been shown to be fast and effective solutions regarding feasible
motion planning for a range of robotic systems. On a meta level, algorithms of this class
iteratively build a graph or tree of the collision-free state-space, by randomly sampling a
state and extending the nearest node towards it with collision-free trajectories. While the
extension step is straightforward and fast in geometric planning, it can be challenging
for complex non-holonomic kinodynamic systems, as there is often no efficient steering
function available to calculate the optimal path between two states. In the following the-
sis, we approached this problem by training a control policy with Reinforcement Learn-
ing (RL) based on Proximal Policy Optimization and a custom Curriculum Learning
approach. The trained model is subsequently used as a local planner for the commonly
used sampling-based motion planner RRT, which is then integrated into the asymptot-
ically optimal motion planning framework AO-x. We evaluated the resulting system
using two car-like robotic systems (one velocity- and the other acceleration-controlled)
in two different scenarios and compared their performance against two Monte-Carlo-
propagation based extension strategies in a detailed analysis. Our experiments show,
that the RL-integrated system finds its initial solution significantly faster than both al-
ternatives, while the motion plans it produces have a noticeably lower cost.
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Zusammenfassung / Abstract

Probabilistisch vollständige Sampling-Based Motion Planning (SBMP) Ansätze wie
Rapidly Exploring Random Trees (RRT) haben sich als schnelle und effektive Lö-
sung erwiesen für die Planung von realisierbaren und kollisionsfreien Bewegungen für
eine Anzahl verschiedener Robotiksysteme. Algorithmen dieser Klasse bauen iterativ
eine Graph- oder Baumrepresentation von kollisionsfreien Bewegungen im Zustand-
sraum, durch die zufällige Abtastung von Zuständen und die anschließende Erweiterung
des nächstliegenden Knoten in die Richtung dieser Zustände. Für geometrische Pla-
nungsprobleme ist der Erweiterungsschritt einfach und effizient. Für komplexere nicht-
holonomische kinodynamische Systeme gibt es jedoch oft keine effiziente Lösung, um
den optimalen Pfad zwischen zwei Zuständen zu berechnen. In der vorliegenden Arbeit
evaluieren wir den Ansatz, diesem Problem durch das Training von Steueragenten mit-
tels Reinforcement Learning zu begegnen. Das Training der Agenten erfolgte basierend
auf Proximal Policy Optimization und einem speziell konzipierten Curriculum Learn-
ing Aufbau. Die trainierten Agenten wurden als lokale Planer in den Erweiterungsschritt
des häufig verwendeten SBMP-Algorithmus RRT eingebaut, welcher wiederum in das
asymptotisch optimale Bewegungsplanungsframework AO-x eingebaut wurde. Das re-
sultierende Gesamtsystem wurde mit zwei verschiedenen Auto-ähnlichen Robotiksys-
temen evaluiert und mit zwei alternativen Monte-Carlo Erweiterungsschrittansätzen in
zwei unterschiedlichen Szenarien verglichen. In unseren Ergebnissen fand das System
mit RL-Integration seine initiale Lösung wesentlich schneller als beide Alternativen und
seine produzierten Bewegungspläne hatten erkennbar niedrigere Kosten.
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1 Introduction

In this chapter we introduce the problem motivating this thesis and give a first brief
overview over our approach.

1.1 Motivation

In recent years, robotic systems are increasingly being embedded into many facets of
both work and private life. Autonomous vacuum cleaners are populating a sizeable num-
ber of both homes and offices, prototype-state self-driving busses begin to support the
public transport infrastructure1 and both production floors and warehouses are becom-
ing co-operated by autonomous robot platforms. The revenue of the global warehouse
robotics market alone is predicted to hit 50 billion US$ in 2030 [1]. A significant chal-
lenge in enabling complex robots to successfully accomplish tasks safely and efficiently
is to calculate collision-free plans achieving motion through cluttered real-world envi-
ronments. Solving this problem has inspired a large amount of scientific publications
and is the topic of a research field called Motion Planning.

Approaches in this field need to confront several complications when aiming for real-
world deployment. Many robotic systems feature a high number of degrees of freedom.
Their corresponding state spaces are often high-dimensional and mostly continuous,
which makes them difficult targets for conventional optimal search strategies. The envi-
ronments the systems are deployed in can be populated with diverse dynamic obstacles
featuring complex non-convex shapes, whose explicit representation can quickly be-
come infeasible. On top of that, the motion plans need to be found reasonably fast
in many scenarios, while still satisfying various secondary targets like smoothness or
energy-expenditure.

One popular approach that emerged to confront these challenges is called Sampling-

Based Motion Planning (SBMP). Utilizing high-performant collision-checking mod-
ules, planners of this class build trees or graphs in the robot’s state space by sampling
collision-free states and connecting them with collision-free trajectories. In doing so,
they iteratively built a representation of the connected obstacle-free space until a tra-
jectory between initial and target state is found. While these techniques are reasonably
straightforward in the domain of holonomic motion (where the optimal path between

1https://www.weforum.org/agenda/2023/01/autonomous-buses-geneva-project/

1
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1.2 Contribution

two points is just a straight line), they become more complex for non-holonomic sys-
tems, as a lot of these kinodynamical systems lack an efficient steering function.

Another research area that saw major advancements in the recent decade is Rein-

forcement Learning (RL). This branch of Machine Learning builds on the intuitive idea
of learning from a reward indicator generated by interaction with the environment, in
other words: learning by Trial-and-Error.

Research into various RL-methods has enabled interesting application for decades. In
1994, Tesauro et al. at IBM’s Thomas J. Watson Research Center presented to the world
a self-teaching program called TD-Gammon [2], which achieved master-level play in
the game of Backgammon. In more recent years, the combination with successful tech-
niques developed in the domain of supervised learning led to many new breakthroughs.
In 2013, Mnih et al. [3] trained an autonomous agent to play Atari Games on a Super-
human Level solely based on the video output of the console(-emulation). Combining
ideas from search, modern supervised learning and RL, Silver et al. [4] built a system
called AlphaGo, which was able to reach master-level play in the game of Go, long
considered the most challenging of classical games for artificial intelligence. In a now
famous exhibition match, AlphaGo won against one of the world’s best Go players, Lee
Sedol, with a final score of 4-1 [5].

While many of the early success stories in RL dealt with discrete action- and state-
spaces, subsequent research explored ways to extend the ideas into the continuous do-
main. This enabled many successful designs targeting diverse dynamical systems in-
cluding among many others quadrupedal or humanoid robots.

In the following thesis we built on these advancements to approach the problem of
steering for kinodynamic sampling-based motion planning.

1.2 Contribution

In this section we give a short overview over the contributions made by this thesis.
Using a state-of-the-art Reinforcement Learning algorithm, we successfully trained

near-optimal control policies for two different car-like kinodynamic systems, exploring
different reward function designs as well as a custom Curriculum Learning based ap-
proach. By reviewing the training results in detail, we provide a case-study regarding
the design of a setup which could be useful for training control policies for a variety of
dynamics.

The policies are subsequently integrated into the extension step of a widely used
sampling-based planner, RRT, and integrated into the asymptotically optimal sampling-

2



1.2 Contribution

based motion planing framework AO-x. This way, we were able to evaluate not only
the effect the RL-integration has on the exploration behavior of RRT, but also how
this impacts the performance of the overall asymptotically optimal planning setup.
To investigate the change in performance, we compare the resulting system with two
alternatives proposed by the research community and provide a detailed analysis of the
results.

In Chapter 2 we introduce the relevant theoretical foundation our work is based on.
After detailing our approach regarding the training of the policies, as well as the integra-
tion into the sampling-based planner in Chapters 3 and 4, we present the results of our
evaluation in Chapter 5. Chapter 6 includes a contextualizing discussion as well as our
thoughts regarding possible future work. In Chapter 7 we summarize our conclusion.

3



2 Background

The two main research areas our approach builds upon are Motion Planning and Rein-

forcement Learning. In the following sections we briefly introduce the relevant concepts
and ideas from both.

2.1 Motion Planning

Planning describes the effort towards "finding a sequence of valid states (i.e. a path)

between specified positions (i.e. start and goal) in a search space" [6]. The specific
problem settings in which planning is performed vary enormously, depending on the
domain and the solution criteria. The focus of the following sections and the thesis
in general, is a subdomain of the planning problem, called motion planning, whose
primary distinction to other variations is its focus on planning in continuous state spaces
[7]. In this thesis, we use the following broad specification of motion planning (based
on the formulation proposed by [8]):

Let x ∈ X be the state of a robotic system, meaning its configuration and, depending
on the specific control space of the setup, its derivatives. Additionally, let Xfree describe
the free space, i.e. the space of states, in which the system does not collide with any
obstacles and does not violate any dynamical constraints.

Given an initial state x(0) = xstart and a desired final state x(T ) = xgoal, the objec-
tive in a motion planning problem is to find a time T and a set of controls u : [0, T ]→ U

such that the resulting motion satisfies x(T ) = xgoal and x(t) ∈ Xfree for all t ∈ [0, T ].
The motion of a system is defined by the differential equation

ẋ = f(x,u) (2.1)

where ẋ stands for the first-order derivative of the state with respect to time and f is
encoding the system’s dynamics.

A planner is said to be complete if it finds a solution to the motion planning problem
if one exists and returns failure otherwise.

This version of the problem is already quite challenging for a lot of robotic systems.
However, a significant portion of the motion planning literature aims to tackle an even

4



2.1 Motion Planning

more difficult problem. In optimal motion planning, the objective is not only to find a
feasible motion (if it exists), but to find the motion that optimizes specific criteria, like
path-length, time-to-reach-target or actuator-effort.

In cases where the state space is discrete and can be modeled using graphs, a suitable
approach is to rely on complete and optimal search algorithms, like A* [9]. When
designing solutions for robotic motion planning problems, this becomes rather chal-
lenging however, because, as previously noted, state spaces are most often continuously
valued. In theory, one could aim to approximate the continuous state space with a
discrete representation, but depending on the chosen resolution, this comes with high
performance costs and the resulting solutions will "only" be "resolution complete"
and "resolution optimal". In general, selecting a suitable a priori discretization can
be very challenging. If it is designed too sparse, a suitable solution could very well
be impossible to find. If it is designed too dense, the computational effort required to
discretize and search the space becomes too expensive for most real-world deployments.

Another common approach is to construct a parameterized representation of the path
or controls and convert the motion planning problem into an optimization problem,
where the objective is to solve for the parameters that minimize a specific cost func-
tion (while also satisfying the various system constraints) [8].

Optimization based techniques for kinodynamic motion planning have been studied
extensively by the research community. In cases where the target system is differen-
tially flat (like quadrotors [10] or even cars with a variable number of trailers [11]),
optimization techniques otherwise used in the geometric planning domain, like spline
optimization, can be almost directly applied to kinodynamic motion planning as well.

Another popular approach for solving the motion planning problem for non-convex
dynamics is called Sequential Convex Programming (SCP). The main idea of SCP is to
linearize the non-convex dynamics around an initial guess, constructing a convex prob-
lem based on the linearized dynamics and solving it with any convex optimizer. The
results of the optimizer are subsequently used as the basis for the next iteration. This
process is repeated until the motion plan fulfills all constraints of the original problem
[12]. The two most relevant approaches in the class of SCP algorithms are currently
successive convexification (SCvx) [13] and guaranteed sequential trajectory optimiza-
tion (GuSTO) [14].

A popular alternative to SCP, called KOMO ([15]), defines the problem as a nonlinear
program (NLP) instead, using the discretized configurations as the decision variables.

5



2.1 Motion Planning

Derivatives are included via implicit Euler integration. Using the assumption that the
cost and constraints only depend on the last k configurations (with k = 2 for acceleration
constraints for example) nonlinear optimization can be done efficiently.

While trajectory optimization methods similar to the ones mentioned are able to
produce near optimal solutions, they typically do not scale well with increasing time
horizons (and a rising number of decision variables). On top of this, the quality and
even feasibility of the solution can depend heavily on the initial trajectory ([16]).

As a response to the challenges of previous methods, a new class of approaches called
Sampling-Based Motion Planning (SBMP) emerged. SBMP interleaves approximation
and search, while trading weaker formal guarantees for significantly better performance.

2.1.1 Sampling Based Motion Planning

SBMP, also referred to simply as "sampling methods", builds on the idea of searching
and probing the configuration / state-space using a sampling scheme and a collision-
detection module [7]. In a general sense, most approaches consist of the following
components [8]:

• State Sampling: Function (random or deterministic) selecting samples from the
state space.

• Extension-Target Selection: Function deciding which previous free-space sam-
ple (node) to extend. This is mainly done via nearest-neighbor selection based on
a specified distance (pseudo-)metric.

• (Simple) Local Planner: Tries to connect and move toward the selected newly
sampled state.

The two major sampling method classes, differ in the data-structure that is built using
these components. Probabilistic Roadmaps (PRMs) comprise methods that represent the
feasible motions in state-space with a roadmap graph. This means investing upfront time
into constructing the graph (learning phase), but subsequent queries can build on the
same graph (if the environment is static). Rapidly Exploring Random Trees (RRTs) on
the other hand build a tree instead and focus on providing speedy results for single-query
scenarios (like the highly dynamic environments of many robotic system deployments)
without the need for exact connection between states. In the following section we will
introduce the basic algorithm for building RRTs and discuss different design choices
and extensions.

6



2.1 Motion Planning

2.1.2 Rapidly Exploring Random Trees

Figure 2.1: Visualization of the exploration behavior of RRT in the state space [17].

The concept of Rapidly Exploring Random Trees (RRT) was initially introduced by
Steven M. LaValle et al. in 1998 [18], to address motion planning for non-holonomic
kinodynamical systems. These mostly lack efficient local planners, able to exactly con-
nect two states, which PRMs generally demand.

Their initial approach (see algorithm 1) constructed a tree T rooted in the initial state
xinit by sampling a random state xrand (line 3), selecting its nearest-neighbor in T ,
xnear (line 4), and choosing the control input that when applied minimizes the distance
between xrand and xnear (line 5). As part of this step, the collision-detection module is
queried to make sure that the state of the system stays inXfree. Selecting this minimizing
control is achieved by using an analytical function, if available. If there is no efficient
analytical solution for the robotic system in question, the selection is based on forward
simulation. If U is finite and relatively small, all controls can be simulated, and the best
combination can be chosen. If U is continuous or disqualifyingly big, the best control
input is often approximated by choosing the best from a set of sampled inputs [19]. The
chosen control input is then applied for a given timestep ∆t to obtain the new state xnew

(line 6), which is added as a new vertex to T and connected to xnear with a new edge
containing the applied control vector u.

7



2.1 Motion Planning

Algorithm 1 GENERATE_RRT(xinit, K,∆t)

1: T .init(xinit)
2: for k ← 1, K do
3: xrand ← RANDOM_STATE()
4: xnear ← NEAREST_NEIGHBOR(xrand, T )
5: u← SELECT_INPUT(xrand,xnear)
6: xnew ← NEW_STATE(xnear,u,∆t)
7: T .add_vertex(xnew)
8: T .add_edge(xnear,xnew, u)
9: end for

10: return T

In their introduction to sampling methods, Lynch and Park [8] describe the basic
RRT algorithm with a formulation that lends itself better to incorporating the various
extensions proposed for RRT since its first introduction. In the following, we will use a
version of the RRT algorithm, which is close to their description (as well as the version
used in [19]), mostly exchanging their verbose descriptions for more concise function
names:

Algorithm 2 FIND_MOTION_WITH_RRT
1: T ← (E, V ) with E ← ∅ and V ← {xstart}
2: while |V | < NEmax do
3: xsamp ← SAMPLE_STATE(Cfree)
4: xnearest ← NEAREST_NODE(T ,xsamp)
5: u(t),x(t),∆t← LOCAL_PLANNER(xnearest,xsamp)
6: if COLLISION_FREE(x(t)) then
7: V ← V ∪ {x(∆t)}
8: E ← E ∪ {(xnearest,x(∆t))}, annotated with u(t)
9: if xnew ∈ Cgoal then

10: return SUCCESS,CONSTRUCT_MOTION(x(∆t))
11: end if
12: end if
13: end while

In this version, SELECT_INPUT and NEW_STATE are combined into
LOCAL_PLANNER, to encompass RRT extensions, where a single edge can be
composed of a set of different controls and forward propagation is interleaved with the
control selection. Also, the COLLISION_FREE primitive is now explicitly stated.

In the following, we will briefly describe the challenges and subsequent design deci-
sions which arise for each of the primitives.

8



2.1 Motion Planning

2.1.2.1 SAMPLE_STATE

Sampling the state is an important task in any SMBP setup as the choices made in the
implementation of this step can heavily influence the growth of the tree T . One of the
intuitive and most often used approaches is to sample from a uniform distribution over
the state space X . Often, the samples are drawn from an approximation of Xfree, via
rejection sampling (Algorithm 3). In relatively uncluttered environments, this is a fast
and easy-to-implement solution. In spaces where many obstacles are present however,
other solutions might be necessary to achieve satisfactory results. Alternative proposed
approaches to sampling can be based on motion primitives [20], potential functions [21]
or more sophisticated approximations of the free state space [22]. State sampling does
not even have to be random, some authors also explored deterministic solutions [23].

Algorithm 3 REJECTION_SAMPLING
1: for i← 0; i < MAX_ATTEMPTS; i← i+ 1 do
2: xsamp ← SAMPLE_UNIFORM(X )
3: if COLLISION_FREE(xsamp) then
4: return xsamp

5: end if
6: end for
7: return FAILURE

2.1.2.2 NEAREST_NODE

This primitive is the second part of the selection of an extension target in the tree. Select-
ing a nearest node, often called nearest-neighbor, hinges on the definition of distance in
the particular state space. While this might be trivial in some cases (like geometric plan-
ning for a holonomic kinematic robotic system), it presents a difficult challenge for many
others, as stating the real distance between two states of a complex kinodynamic system
requires an (efficient) optimal steering solution which is mostly unavailable. In these
cases, authors often deploy a weighted euclidean distance metric, where the weights are
part of the configuration of the planer and need to be tuned based on heuristics.

Another practical challenge of the nearest-neighbor search is the runtime performance
of the query, which heavily depends on the used data structure. While the naive brute
force list comparison approach can work for small trees, its theoretical running time is
O(N), which heavily impacts the performance of the overall system, especially con-
sidering that the impact of the distance calculation itself is not yet factored in, whose
time complexity is heavily dependent on the dimensionality of the state space and has
to be done for every node in the tree. One of the most common ways to deal with this is

9



2.1 Motion Planning

the usage of a data-structure called KD-tree ([24]), which extends the ideas of balanced
binary search trees to multidimensional data and offers significantly improved runtimes
for nearest-neighbor queries in large trees. For queries of K nearest-neighbors with
d-dimensional entries, the time complexity with KD-Trees is O(N1− 1

d +K) [25].

2.1.2.3 COLLISION_FREE

The goal of the COLLISION_FREE method is to return for any given trajectory (defined
by the initial state xnearest and the applied control u) an answer stating if it is free of
collision, i.e. fully part of Xfree. In some implementations, checking for collisions is
done as part of the local planning step, for example by checking at each timestep of the
forward propagation.

Even though many sophisticated techniques emerged over the years, and highly opti-
mized collision checkers are packaged within many robotic frameworks, this operation
can still be expensive computational wise for environments with a large amount of (com-
plex) non-convex obstacles. Surveying the research in this domain could itself fill the
entire thesis, but as our focus is on the LOCAL_PLANNER extension, covered in the
next subsection, we will just direct any interested reader towards the introduction into
collision checking theory in [26].

2.1.2.4 LOCAL_PLANNER

The local planner step, applied in Line 5 of Algorithm 2 is used to find a motion extend-
ing T from xnearest towards xsamp. For kinematic systems, this might be as trivial as
returning a straight line. For kinodynamic systems with various dynamical constraints
however, it is far less trivial and motivates a vast amount of research including this very
thesis.

The initial approaches of the early RRT papers were based on random propagation,
sometimes termed Monte-Carlo-Propagation (MCP) [27], of the controls. Algorithm
4 shows a one-shot approach. First, the random control vector u ∈ U and a timestep
∆t ∈ (0,∆tmax] are sampled. By subsequently applying u for ∆t, the system is then
propagated forward (Line 4). The control vector, the sampled time and the final state of
the trajectory are returned. Implementations differ regarding the selection of ∆t, which
is sometimes sampled and sometimes set to a constant.

Instead of propagating only ones, the system dynamics could be simulated multiple
times with different random controls and timestep-lengths, before selecting the control
input which brings the system’s state closest to xgoal. This version of the Local Planer is
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2.1 Motion Planning

shown in Algorithm 5. The number of sampled controls K becomes a part of the imple-
mentation parameters, which needs to be tuned according to the planning environment.

When using the guided version of MCP coupled with the fixed timestep, one has to
be aware of the resulting limitations however. In a recent publication [19], researchers
Kurz and Stilman proved that the claim of the initial RRT paper, that the described al-
gorithm (selecting the best control input and a fixed timestep) was "probabilistically
complete under very general conditions" [18], was not accurate. The authors describe
a kinodynamic system for which this original approach would never be able to find a
feasible motion plan, even though one exists. While the dynamics of the system they
used for their proof were quite specific and unusual, selecting the timestep-length ran-
domly avoids these issues and is therefore recommended. In later work, LaValle et al.
abandoned their first version of the local planning step.

Algorithm 4 MCP(xinit,xgoal)
1: u← SAMPLE_CONTROL(U)
2: ∆t← SAMPLE_TIMESTEP(∆tmax)
3: u(t),x(t)← PROPAGATE_FORWARD(u,∆t)
4: return u(t),x(t),∆t

Algorithm 5 MCP-Guided(xinit,xgoal, K)

1: ures(t)← ∅
2: xres(t)← ∅
3: ∆tres ← ∅
4: dmin ← inf
5: for i← 0; i < K; i← i+ 1 do
6: u(t),x(t),∆t← MCP(xinit,xgoal)
7: d← DISTANCE(x(∆t),xgoal)
8: if d < dmin then
9: ures(t)← u(t)

10: xres(t)← x(t)
11: ∆tres ← ∆t
12: dmin ← d
13: end if
14: end for
15: return ures(t),xres(t),∆tres

11



2.1 Motion Planning

2.1.3 Asymptotically Optimal Planning: AO-x

Figure 2.2: Snapshots from an AO-RRT planning attempt for a sideways maneuver of
the Dubin’s car [28]

In their paper "Asymptotically Optimal Planning by Feasible Kinodynamic Planning in
State-Cost Space"[28], published in 2016, Kris Hauser et al proposed a meta-algorithm
approach for asymptotically optimal motion planning. The approach is based on the
theorem, that "any optimal planning problem can be transformed into a series of feasible
planning problems in a state-cost space whose solutions approach the optimum" [28].
If provided with a well-behaved Planner A, the probability that the resulting path y of
the meta-planner AO-x is suboptimal is approaching zero, as the number of iterations n
approaches infinity. The definition of well-behaved is fairly nonrestrictive:

1. If there exists a feasible solution and c̄ > C∗, then A terminates in
finite time, and

2. Given a cost bound c̄, the expected suboptimality of the computed path
is shrunk toward C∗ by a non-negligible amount each iteration

Here, c̄ describes the current cost bound of the iteration and C∗ the optimal cost. The
proposed algorithm (Algorithm 11), operates in the state-cost space. The state x, which
the base planner initially uses, is supplemented with the cost-to-come c, resulting in the
new state z = (x, c). This also applies for all states in the goal-region (transforming
it into a cylinder with infinite extent in the cost direction). In the beginning, the base
plannerA is tasked to find a feasible solution to the problem with an infinite cost bound-
ary Pinf . If no solution is found, this is where the execution terminates with a failure.
Otherwise, the cost of the resulting path is used as the cost boundary for the next itera-
tion. This loop continues, until the maximum number of iterations is reached, at which
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2.1 Motion Planning

point the latest computed path yn is returned. In most deployments of the algorithm, the
iteration bound is exchanged for a bound on the execution time, for obvious reasons.

Algorithm 6 Asymptotically-optimal(P ,A, n)
1: Run A(Pinf) to obtain a first path y0. If no solution exists, report "P has no solu-

tion".
2: Let c0 = C(y0).
3: for i = 1, 2, . . . , n do
4: Run A(Pci−1

) to obtain a new solution yi.
5: Let ci = C(yi).
6: end for
7: return yn
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2.2 Reinforcement Learning

2.2 Reinforcement Learning

Figure 2.3: Typical depiction of the agent interaction model in a Markov Decision Pro-
cess [29]

Next to supervised and unsupervised learning, Reinforcement Learning (RL) is currently
one of the three major research fields in Machine Learning. On the foundational level,
RL could be described as a computational approach following one of the fundamental
ideas of most theories about learning and intelligence: "Learning from interaction" [29].

In the following we will briefly introduce the concepts from the Reinforcement
Learning domain, which are necessary for the understanding of our approach. For a
comprehensive introduction into the topic, we recommend "Reinforcement Learning:
an Introduction" by Sutton and Barto [29], which is also used as the basis for the
following sections.

2.2.1 Markov Decision Processes

To enable precise theoretical statements, the problem space in which RL approaches
operate is often formulated as a Markov Decision Process (MDP), which is visualized in
Figure 2.3. The basic setup of the MDP consists of a learning and decision-making entity
called agent, and an environment, which is essentially everything outside the agent. At
each discrete timestep t = 0, 1, . . . , T the agent

• receives a representation of the environment’s state (observation) St ∈ S

• chooses an action At ∈ A(s) based on this representation

As a result of the chosen action and according to the dynamics specified by a (possibly
probabilistic) transition function, the environment’s state changes from St to St+1, which
is again fed to the agent, in addition to a reward signal Rt+1 ∈ R ⊂ R.
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2.2 Reinforcement Learning

The agent’s objective in the MDP, is to maximize the expected return Gt defined as:

Gt=̇Rt+1 +Rt+2 +Rt+3 + · · ·+RT (2.2)

To extend this objective to cases where the MDP is non-episodic, Gt can be defined
as a discounted return

Gt=̇
∞∑
k=0

γkRt+k+1 (2.3)

In this formulation γ ∈ [0, 1] is called the discount rate and governs how valuable
future rewards are for the agent.

While interacting with the environment, the agent’s behavior is typically defined by a
mapping of states to action-probabilities, called policy π(a|s), which encodes the prob-
ability that the agent will choose action a if in state s. For any specific policy, the so
called state-value-function vπ(s) returns the expected reward the agent receives, when
starting from s and acting according to π.

vπ(s) =̇ Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s], for all s ∈ S (2.4)

The policy’s action-value function qπ on the other hand, returns the expected return
of the agent, if it starts in state s, chooses action a and afterwards follows the policy.

qπ(s, a) =̇ Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s, At = a] (2.5)

An optimal policy, often written as π∗ is defined as a policy whose expected return
is greater or equal to that of any other policy. In contrast to the optimal state- and
action-value functions, v∗ and q∗ which are unique, many different equally optimal
policies can exist [29].

Reinforcement Learning methods differ in what they are trying to learn. So called
value-based methods, like Sarsa[30] or Q-Learning [31], are built on iteratively refining
value-function-estimations. The estimations are updated based on the encountered states
and the received rewards, by various different proposed algorithms. In the case of Sarsa
for example, the update rule is as follows:

Q(St, At)← Q(St) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.6)
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Where Q is an estimate for the optimal action-value function q∗. This update is per-
formed, following each transition from a non-terminal state St to St+1. Q(St+1, At+1) is
regarded as having the value zero, if St+1 is terminal. The parameter α is usually called
the step-size and governs, the size of the updates.

The value-function-estimations are in turn used as the basis of the policy, for example
by using an ϵ-greedy selection method, i.e.choosing the action with the highest estimated
action-value Q(s, a), most of the time, but sometimes selecting randomly (to guarantee
exploration). The pseudocode in Algorithm 7 (based on [29]) shows the general form of
the Sarsa control algorithm as an example.

Algorithm 7 Sarsa
1: parameters: step size α ∈ (0, 1], small ϵ > 0
2: Init. Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that Q(terminal, ·) = 0
3: for i in 1 . . . Nepisodes do
4: Initialize S
5: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
6: while S not terminal do
7: Take action A, observe R, S’
8: Choose A’ from S’ based on the policy derived from Q (e.g., ϵ-greedy)
9: Q(S,A)← Q(S,A) + α[R + γQ(S ′, A′)−Q(S,A)]

10: S ← S ′;A← A′

11: end while
12: end for

Another important class of RL-approaches are so-called policy gradient methods. In-
stead of using value-function-estimates for the guidance of the agent’s actions, they learn
a parameterized policy instead, which can select actions directly [29]. These policy-
based methods, are interesting for robotic-applications, as they offer practical ways of
handling large or even continuous action spaces.

2.2.2 Policy Gradient Methods

Policy Gradient Methods learn a parameterized policy πθ defined as

πθ(a|s) = P (At = a|St = s, θt = θ) (2.7)

where θt represents the policy’s parameters at timestep t. The parametrization of the
policy can be implemented in many ways, but πθ(a|s) needs to be differentiable with
respect to θ. Another constraint emerging in practice is, that the policy should never
become fully deterministic, as to ensure at least a small amount of exploration.
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The parameter vector θ is learned "based on the gradient of some scalar performance
measure J(θ) "[29]. As the target is to maximize the performance, the parameters are
updated in each round by approximating gradient ascent in J [29]:

θt+1 = θt + α∇̂J(θt) (2.8)

with ∇̂J(θt) ∈ Rd′ specifying the stochastic estimate of the gradient of J (with respect
to θt). The gradient estimator is also referenced as ĝ and one of the most commonly
used versions has the form [32]:

ĝ = Ê[∇θlogπθ(at|st)Ât] (2.9)

In this equation, the expectation Ê[. . . ] usually stands for the empirical average over a
finite batch of samples, collected by an algorithm alternating between optimization and
sampling [32]. Ât stands for an approximation of the advantage function at timestep t.
When using automatic differentiation software, a common way to obtain ĝ is to differ-
entiate the objective

LPG(θ) = Êt[logπθ(at|st)Ât] (2.10)

A problem with this objective definition is however, that performing multiple steps of
optimization on the same trajectory, empirically leads to contra-productively large pol-
icy updates [32]. This motivates the search for different objective functions.

2.2.3 Proximal Policy Optimization

One of the most impactful new approaches of the recent years in regards to Policy Gra-
dient Methods was proposed as "Proximal Policy Optimization Algorithms" (PPO). [32]
The central innovation with PPO is a new objective function, called "Clipped Surrogate
Objective":

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (2.11)

The min term is composed of two components. The first is based on the objective
LCPI proposed in [33]

LCPI(θ) = Êt[rt(θ)Ât] (2.12)

where rt(θ) denotes the probability ratio rt(θ) =
πθ(at|st)

πθold
(at|st) . The second term is a mod-

ification of this surrogate objective. By clipping rt(θ) between (1 − ϵ) and (1 + ϵ) it
removes any incentive for rt to move outside of the interval [1 − ϵ, 1 + ϵ]. By taking
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2.2 Reinforcement Learning

Figure 2.4: One timestep of PPO’s surrogate function LCLIP [32]

the minimum of the two terms (clipped and unclipped objective), LCLIP basically rep-
resents a lower bound on LCPI . Figure 2.4 shows the result of the objective for a single
timestep as a function of the probability ratio. If the advantage function is bigger than
0, large probability ratios are quasi ignored.

In their paper, the authors also introduce an alogrithm based on LCLIP in an actor-

critic[34] framework :

Algorithm 8 PPO, Actor-Critic Style
1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Run policy πold in environment for T timesteps
4: Compute advantage estimates Â1, . . . , ÂT

5: end for
6: Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

In each iteration, the old policy (acting on the basis of the neural network based policy
termed "actor") is deployed in the environment for a fixed number of timesteps. After
this, the estimates of the advantages of each timestep are calculated (based on the, again,
neural-network based value-function approximator termed "critic") and stored. At the
end of N of these runs, the parameter vector is updated via optimizing the objective.

Even though the implementation of PPO is relatively straightforward, "requiring only
few lines of code changes to a vanilla policy gradient implementation" [32], evaluation
based on a variety of tasks (including robotics and Atari-games) show, that it has similar
stability and reliability to previous approaches, but better overall performance.
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2.3 Combining Reinforcement Learning and Sampling-Based Motion Planning

2.3 Combining Reinforcement Learning and

Sampling-Based Motion Planning

The combination of RL and SBMP has emerged as a promising research direction. Over
the years, RL based enhancements have been proposed for many of the primitive op-
erations underlying most SBMPs, including sample generation, distance computation,
collision-detection and steering. In their recent survey [35] McMahon et al. provide an
extensive overview over the various ways sampling-based planners have been extended
with machine learning approaches, including many with RL. In the following we will
focus on the ones targeting the steering operation, as they are the closest to our approach.

2.3.1 Integrating a RL trained Controller into PRM

In their 2018 publication [36], Faust et al. propose a hierarchical long-range naviga-
tion method based on the integration of a RL-trained close-range point-to-point steering
policy into the Probabilistic Road Map planner framework (PRM). To evaluate their
system, they trained policies for two robotic systems, a velocity-controlled differen-
tial drive platform (with observations incorporating noisy lidar scans), as well as an
acceleration-vector-controlled aerial cargo delivery drone, both with continuous state-
and action-spaces. Training was achieved via DDPG [37] in the case of the former and
CAFV [38] in the case of the latter system.

To integrate the results of the local planner policies into PRM, they proposed a tech-
nique of nearly-connecting edges. If the distance of the final state of a trajectory is
below a predefined threshold, a connection attempt query to the local planner is deemed
successful. To be able to estimate to probability, that these connections are actually ex-
ecutable, the authors query the local planner multiple times for each edge (with states
sampled close to the start and goal-states). The edge’s distance is then set to the average
of all queries, and it will only be added, if the connection-success rate is above a set
threshold.

2.3.2 Integrating a RL trained Controller into RRT

In 2019, Chiang et al. [39] published their approach towards integrating a RL-based
steering policy into SBMP, but instead of PRM, they combine RL with RRT. Their
proposed system is based on two components. For the first one, they train an agent to
steer a simulated version of the targeted robotic system through a cluttered map. Like
Faust et al., they use simulated (noisy) lidar scans as the observation-input for their
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system in addition to the robots configuration and velocities (in the case of second order
systems). For the training, they utilized the parameterized proxy-reward

RθrDD
= θT [rgoal rgoalDist rcollision rclearance rspeed rstep rdisp] (2.13)

where

• rgoal signals if the goal is reached (1 if reached, 0 else)

• rgoalDist is the negative Euclidean distance to the target

• rcollision penalizes collisions (-1 if the agent collides, 0 otherwise)

• rclearance rewards the distance to the closest obstacle

• rspeed is set based on the agent’s speed

• rstep is a constant step penalty (value 1)

• and rdisp is the sum of displacements between the current position and the previous
positions 3, 6 and 9 steps earlier.

The parameter vector θ is optimized via a special meta-training-framework called
AutoRL [40].

After the agent is evaluated and found to achieve satisfying results on the steering task,
it is employed in the target map, while its time-to-reach (TTR) is monitored. This data-
generation period yields a set of (state, future-cost) tuples, which is fed to a supervised
learning system to train the second component, a reachability estimator, informing the
nearest-neighbor selection as well as the sample generation.

Based on the steering agent and reachability estimator, they subsequently build their
RRT based system, using the steering agent for the tree expansion and a hierarchical
combination of euclidean distance and the TTR estimation of the reachability estimator
as the nearest-neighbor selector.

2.3.3 Integrating a RL trained Controller into DIRT

Similar to the previous two approaches, Sivaramakrishnan et al. [41] also used RL
techniques to train a controller to reach a goal set. Instead of incorporating simulated
sensor data however, they trained the agent in an obstacle free environment and used a
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significantly less complex reward function, returning 0 if the current state is in the goal
region and -1 otherwise.

r(xt, xG) =

0, if xt ∈ XG

−1, else
(2.14)

After evaluating the performance of a selection of different Deep Reinforcement Learn-
ing Algorithms, they settled for the best-performing, Soft-Actor-Critic (SAC), and com-
bined it with Hindsight Experience Replay to train the controller for their three different
robotic system targets (first- and second order differential drive vehicle and one Segway
system in a more complex physical simulation). The trained controller is used as a local
planner in the asymptotically optimal planner DIRT [42].

2.3.4 Positioning the approach of this thesis

After introducing the proposals made by other researchers in the space of integrating
RL into SBMP, it seems fitting to briefly note how the approach of our work fits into the
existing landscape.

While our design follows the approach of Chiang et al. [39] regarding the utilized
base planner our problem domain and solution design diverge in a few ways. On top of
implementation details, like the deployed RL-algorithm or the targeted robotic systems,
the major differences are:

1. Observation Space: While Chiang et al. use obstacle-aware control policies,
trained based on simulated sensor input, we chose to follow a different route in
this regard and train our policies in obstacle free environments. While this in-
creases the likelihood, that the agent returns infeasible trajectories, the signifi-
cantly smaller observation space reduces the complexity of both the training and
the integration.

2. Distance Estimation: Chiang et al. use rollouts of their trained policies to train a
distance estimator with supervised learning, which is subsequently integrated into
both the nearest-neighbor search and the sampling step, observing mixed results.
We instead rely on a faster and less complex, but also less accurate weighted

euclidean distance approximation.

3. Reward Function Design: Chiang et al. use a dense function design, which
they call a "proxy-reward", for their training setup, to combat the problem of the
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inherently sparse reward-signal of the training environment. We instead success-
fully train our agents with a Curriculum Learning approach and a reward function
which is closer to the actual distance between the initial and the target state of a
task.

Regarding the above points, our approach is much closer to the proposal made by Sivara-
makrishnan et al. Another similarity with their design is, that we also investigate the
integration into an asymptotically optimal motion planning framework. While we focus
on the integration into AO-x[28] however, they extend DIRT[42] and explore variations
of the goal-sampling step.
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3 Training Control Policies with RL

As the goal of this thesis is to evaluate the integration of a Reinforcement Learning
based local planner policy into SBMP, we need to design suitable dynamic systems and
environments as well as a training setup for them. In the following we will introduce
these important components of our evaluation approach.

3.1 Robot Systems and Environments

Figure 3.1: Visualization of the car-like system’s geometry.

For our evaluation, we chose a wheeled mobile robotic system with car-like dynam-
ics. To introduce different levels of complexity, the first system is controlled via linear
velocity and steering angle, where the second is controlled via linear acceleration and
the first-order derivative of the steering angle. Figure 3.1 shows the geometry of our
setup. In the following we will introduce the dynamical equations for both the first- and
second-order system.
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3.1.1 First-Order Car

u = (v, ϕ) ∈ U ⊂ R2 (3.1)

x = (x, y, θ) ∈ X ⊂ R2 × SO(2) (3.2)

The state of the first order car is defined by the position of the center of the rear axis in
cartesian coordinates (x, y), as well as its orientation θ. To keep the dimensionality of
the state space low, both position and orientation are given relative to the current target.
The system is controlled via two inputs, the linear velocity v and the steering angle ϕ.
Its dynamics ẋ = f(x,u) are defined by

ẋ = v · cos(θ) (3.3)

ẏ = v · sin(θ) (3.4)

θ̇ =
v

L
· tan(θ) (3.5)

where L describes the car’s length.

3.1.2 Second Order Car

The second order car is controlled via linear acceleration a and the change-rate of the
steering angle ω. This means that the state space needs to include the linear velocity and
the steering angle.

u = (a, ω) ∈ U ⊂ R2 (3.6)

x = (x, y, θ, v, ϕ) ∈ X ⊂ R2 × SO(2)× R2 (3.7)

The expanded dynamic equations are consequently

ẋ = v · cos(θ) (3.8)

ẏ = v · sin(θ) (3.9)

θ̇ =
v

L
· tan(θ) (3.10)

v̇ = a (3.11)

ϕ̇ = ω (3.12)
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3.2 Environment

A major component of building any RL based approach is the careful design of the en-
vironment in which the agent is to be trained. Based on the general framework of the
Markov Decision Process (see Chapter 2.2.1), the main components of the RL environ-
ment are:

• observation space: What is the nature of the observations the agent receives from
the environment?

• action space: How can the agent interact with its environment?

• transition/step function: In which way does the state of the environment transi-
tion from one to the next, based on the agent’s control signal?

• reward function: Which system state is rewarded, and by how much?

In the following, we will briefly describe the decisions we made regarding these primi-
tives.

3.2.1 Observation and Action Space

In our system design, the agent is trained in a directly observable environment. This
means, that the observation space and action space directly follow from the definition
of the system’s dynamics, outlined above. The dynamic boundaries are set via configu-
ration parameters. In the case of the first order system, these are the speed limits vmin

and vmax as well as the minimum and maximum steering angle, ϕmin and ϕmax. For the
second order system the parameter set is supplemented by the limits on the acceleration,
amin and amax, as well as the limits on the change of the steering angle, ϕ̇min and ϕ̇max.
As some algorithms can be sensitive in this regard, both the observations and the actions
are normalized to the range [−1, 1].

3.2.2 Transition Function

The transition function, also often called step function in the RL domain, is responsi-
ble for calculating the next state of the system, based on the last state and the agent’s
control input. The environments we designed for the training of our control policies are
deterministic. To efficiently approximate the system’s dynamics after each timestep of
length ∆t, we utilize Euler’s integration. The resulting transitions are
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xt+1 = vt · cos(θt) ·∆t (3.13)

yt+1 = vt · sin(θt) ·∆t (3.14)

θt+1 =
vt
L
· tan(θt) ·∆t (3.15)

for the first order car and

xt+1 = vt · cos(θt) ·∆t (3.16)

yt+1 = vt · sin(θt) ·∆t (3.17)

θt+1 =
vt
L
· tan(θt) ·∆t (3.18)

vt+1 = vt + at ·∆t (3.19)

ϕt+1 = ϕt + ωt ·∆t (3.20)

for the second order car.
In the setup we designed, the velocity and steering angle are bounded by the envi-

ronment parameters vmin, vmax and ϕmin, ϕmax respectively and enforced by the envi-
ronment through clipping, meaning when v and ϕ hit their limit, applying additional
acceleration or velocity through the control input does not change the state-variables.

3.2.3 Reward Function

After encoding the dynamics of the environment, via observation, action and the transi-
tion function, another major component of the RL training setup is the design of a suit-
able reward function. When deciding on the specific formulation for the environment,
the researcher needs to carefully weigh how much prior information is to be encoded, as
doing so might bias the exploration of the agent towards suboptimal solutions. For the
training of the agents we designed two different reward functions. One is sparse, mean-
ing that the agent receives relatively few reward signals (in our case only when the goal
is actually achieved). The other is dense, supplying the agent with constant feedback
regarding its advancement towards the goal.

26



3.2 Environment

3.2.3.1 Sparse Reward Function

We initially decided on a minimalistic function design, solely based on the performance
indicators we want to optimize: reaching the goal configuration in the least amount of
steps. The resulting reward function rt+1(xt) is:

rt+1(xt) =

1, if xt ∈ XG

− 1
Nmax

, else
(3.21)

In this formulation, Nmax describes the maximum number of steps, before the environ-
ment is terminated. We normalize the step penalty, to keep the cumulative reward the
agent can achieve in an episode in the range [−1, 1], regardless of the specific maximum
episode length setting.

The advantage of a comparatively minimal reward function like this is that it is easily
applicable to all kinds of environments, as long as the dynamical constraints are enforced
by the environment and the objective is to find the fastest trajectory. On top of that, it
does not include any prior information on how to best achieve the objective, which could
bias it towards suboptimal local minima.

The drawback is however, that the reward is sparse and for complex dynamics the
agent might take a lot of time before reaching the goal for the first time. This is why we
also designed a dense reward function, mostly with the training of the second-order-car
environment in mind, which we introduce in the following subsection.

3.2.3.2 Dense Reward Function

The main goal in designing the alternative reward function was to increase the amount
of reward signal, the agent gets in the early stages of training. Instead of only rewarding
the accomplishment of the objective (i.e. reaching the target region), we want to also
signal to the agent when it is improving its state towards the goal. For this we used a
function we call normalized-distance-reward roughly similar to the one utilized in [39]:

d′αt+1
= α0 · dnt + α1 · dont

+ α2 · dvnt
+ α3 · dϕnt

(3.22)

rαt+1 =

Nmax−n
Nmax

, if xt ∈ Xgoal

(1−
d′αt+1

α0+α1+α2+α3
) · 1

Nmax
, else

(3.23)
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While the current state xt is not in the goal region Xgoal, the parameterized reward
rαt+1 , awarded in timestep t+1 is based on the weighted sum of the normalized distances
between the current state and the goal state, with dn denoting the normalized positional
distance and don the normalized angular distance. The normalized absolute difference
between current and target linear velocity and steering angle are noted as dvn and dϕn

respectively. Because all components of the weighted sum are normalized between 0
and 1, its maximum is the sum of the parameters. The first part of the second term is
therefore the normalized weighted distance substracted from one and multiplied with
the maximum step reward. If the agent reaches the goal region, it receives the maximum
possible amount for all remaining steps and the episode is terminated. This is calculated
by Nmax−n

Nmax
, where n describe the current number of steps. This way, the cumulative

reward for each episode is in the range [0, 1].

3.3 Curriculum Learning

While modifying the reward function proposed in Subsection 3.2.3.1 had the intention
of providing a reward signal even though the chances of reaching the goal are initially
low, another way to approach the same issue is to make the success of the early rollouts
more likely. This can be achieved by using comparatively easier samples first, before
iteratively increasing the difficulty.

This approach resembles ideas from the research field of Curriculum Learning, in
which instead of directly learning the target task, the agent is presented with a sequence
of incrementally more challenging tasks (the curriculum), before finally facing the target
environment. While it is not consistently defined in the literature what constitutes a
curriculum, the intuitive and in fact most common form is as an "ordering of tasks"
[43].

In the case of learning our control policies, the general task is to generate a motion
transferring the system from any initial state to a goal state. The difficulty of this task
however can vary tremendously depending on initial and goal state. As we want to train
the agent with a curriculum we now need to find combinations of initial and goal state
with increasing difficulty. While it is certainly possible to craft some easy scenarios
by hand, it gets increasingly tedious for more complex dynamics, like in the case of
the second order car. We also might risk introducing a contra-productive bias into the
training samples this way.

To combat these issue and to automate the process, we designed a way to generate
samples with a bounded difficulty.
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3.3 Curriculum Learning

Figure 3.2: Setup to generate start positions with bounded maximum cost

Generating easy task configurations, for the robot systems we train, means selecting
initial states in which even a RL-agent in the early stages of training can be expected to
find a solution in at least a few rollouts (generating the first usable reward signal). There
are a few different approaches, one could think of regarding this task. An intuitive one
might be to generate random samples and feed them into an optimization based motion
planning system to generate a near-optimal solution which could be used to specify
the task configuration’s complexity. While this is certainly doable for the dynamical
systems we target, it requires additional computational time and effort.

Another less computationally intensive approach turns the problem on its head uti-
lizing the translational and rotational invariances inherent in the dynamics of our target
systems. Given an initial state xt and a control vector ut which causes the system to
transition into the next state xt+1

xt+1 = xt + f(xt,ut) ·∆t (3.24)

we can apply both translational and rotational transformations on the states, without
invalidating the dynamical equation (as long as we apply the same transformations to
both). If we would for example rotate xt by 90 degrees, move it 1 unit along the y-axis
and apply the initial control vector ut to this transformed state x′

t, the resulting next state
x′

t+1 would also be rotated 90 degrees and moved 1 unit along the y-axis compared to
xt+1.

x′
t+1 = x′

t + f(x′
t,ut) ·∆t (3.25)

This holds for both the first-order and the second-order car, where the additional state
variables v and ϕ would not be touched by the transformations.

We are using this property for our approach. Instead of trying to measure the difficulty
of specific configurations, one can also generate random trajectories with a fixed length,
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3.3 Curriculum Learning

by applying random controls for N timesteps. The start and end state of the resulting
trajectory xstart and xend are now known to have a solution with a maximum length of
N steps.

We subsequently transform the initial state of the trajectory from its frame W to the
frame F of the final pose of the trajectory. The homogeneous transformation matrix for
the transformation Tp

F can be derived by multiplying the inverse of the transformation
from W to F , T F

W
−1, and the homogeneous matrix representation of the robot pose in

world frame Tp
W :

Tp
F = TW

F · T
p
W = T F

W

−1 · Tp
W (3.26)

=

cos (θ − θf ) − sin (θ − θf ) cos (θf )(x− xf ) + sin (θf )(y − yf )

sin (θ − θf ) cos (θ − θf ) sin (θf )(xf − x) + cos (θf )(y − yf )

0 0 1

 (3.27)

This shows, that the transformed trajectory pose p′ = (x′, y′, θ′) can be calculated based
on the final pose pf = (xf , yf , θf ) and the untransformed pose p = (x, y, θ) with

θ′ = θ − θf (3.28)

x′ = cos(θf )(x− xf ) + sin(θf )(y − yf ) (3.29)

y′ = sin(θf )(xf − x) + cos(θf )(y − yf ) (3.30)
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3.4 Evaluation

3.4 Evaluation

Using the stable-baselines 3[44] implementation of PPO and our custom-built environ-
ments, we trained agents for both the first- and the second-order car-like robotic systems
using similar hand-tuned parameters (see Appendix). In the following we will describe
results we achieved during the training process, separated by the respective dynamics.

3.4.1 First-Order Car

In the training for the first-order car, we purely relied on the reward function described
in Subsection 3.2.3.1. Figure 3.4.1 shows the mean reward as well as the mean episode
length during one million training iterations using 3 different seeds. While all three
seeds show signs of improvement regarding both the reward (increasing) and the episode
length (decreasing), one of the seeds drastically outperforms the others of the same
batch, converging towards an episode length of 18, which is close to the optimum. These
results highlight the vulnerability of the training procedure to the randomness inherent
in the sampling of the states it observes during training. While the results suggest, that
all of the seeds shown in the graph should eventually converge, testing multiple seeds in
the early stages of the training, can drastically speed up the process.

3.4.2 Second-Order Car

The second order car environment proved to be significantly more challenging than the
one for the first order car, which is not surprising, considering that the dynamics of the
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3.4 Evaluation

system are more complex and the observation space needs to include 4 more dimensions:

xt = (xt, yt, θt, vt, ϕt, vtarget, ϕtarget) (3.31)

When reusing the same parameters and reward function as described in the above sec-
tion for the first-order car, none of the seeds show any noticeable improvement, after
one million steps (see Figure 3.6). As looking for a set of parameters that significantly
improved this performance was not successful, we turned to other ideas. Our first at-
tempt was to investigate different reward functions, which motivated the design of the
normalized-distance-reward already described in Subsection 3.2.3.2.
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Figure 3.3: Results for 3 different seeds of PPO with similar parameters as in Subsection
3.4.1 and the reward function step-penalty-target-reward

3.4.2.1 Using a Dense Reward Function

Figure 3.4 shows the results for 3 different seeds, in the second-order-car environment,
using the described dense reward function, normalized-distance-reward.

While the mean reward rises in the initial phase of the training, it quickly converges
and stays around 0.7. The episode length meanwhile barely changes and hovers near
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3.4 Evaluation

the maximum. As the episode is terminated early, in case the agent reaches its goal, the
graph is clearly showing, that no useful control policy was learned.
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Figure 3.4: Results for 3 different seeds and PPO with similar parameters as in 3.4.1 and
the reward function normalized-distance-reward

While it might be the case that the performance could be increased with the perfect
set of parameters, found in a time-intensive tuning process, we instead successfully de-
ployed the Curriculum Learning strategy described in 3.3 to further the training efforts,
which we detail in the next section.

3.4.2.2 Curriculum Learning

Following the approach introduced in Subsection 3.3, we generated 1000 starting config-
urations with maximum cost of 20 steps and introduced them gradually into the pool of
starting configurations used for training. Figure 3.5 shows the curriculum setup as well
as the result of the training. Nsamples denotes the number of samples (from the generated
list) introduced. For the first 2M iterations, we used a pool of 100 different samples. Af-
ter that, we gradually increased the size of the sample-cohort every 500k iterations to
250, 500 and then 1000. At 3.5M steps, we opened the sampling up to random sam-
pling. As can be seen in the graph, the performance converges to roughly 17 steps for
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3.4 Evaluation

the pool of size 100. After increasing to pool size, the performance barely changes.
When opening up the start-configuration-selection to random-sampling however, both
the mean reward and the episode length take a significant hit, before converging to a
new set-point of about 0.75 mean reward and 30 steps.

Figure 3.5: Mean reward of the RL-Policy in the second-order car environment over the
course of 10M training iteration steps. The color of the background indicates
the curriculum-phase.

This should be close to the optimal performance and manual inspection of the gen-
erated trajectories (see Figure 3.6 for examples), showed promising results. Because of
this, we decided to use the trained model for the RRT-integration.
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3.4 Evaluation

Figure 3.6: Policy rollouts for 3 different starting configurations. Earlier states have a
brighter color. The size of the goal region is indicated by the circle for the
position and the gray car silhouettes for the orientation.
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4 Integrating RL-Based Policies
into Sampling-Based Motion
Planning

After successfully training the control policies, the second necessary component is to in-
tegrate them into the overall RRT-Planner Framework, as part of the LOCAL_PLANNER
primitive. As introduced in Section 2.1.2.4, the local planner is used to extend the plan-
ner’s tree from a selected node towards a sampled goal state (line 5 in Algorithm 2). It
receives the system state xnearest of the selected node, as well as the goal state xsamp.
Based on these (and some system parameters, like the maximum number of extension
steps), it generates a list of control vectors u, which, if applied, should advance xnearest

towards xsamp.
When integrating our RL policies into this step we face the problem, that the

workspace of the overall motion planner is most often significantly larger than the one
the model is initially trained in. We therefore need to select an intermediate target in
the general direction of the randomly selected expansion goal, but close enough to the
current position to be reachable by the trained agent.

4.1 Determining an Intermediate Target

An intuitive first approach to this would be to take a step of length r from the initial
position (xnearest, ynearest) towards the target (xrand, yrand) to reach (x′, y′):

∆x =

[
xnearest

ynearest

]
−

[
xrand

yrand

]
∆̂x =

∆x

|∆x|[
x′

y′

]
=

[
x

y

]
+ r · ∆̂x

The relation between original distance d = |∆x| and the new distance r could then
be used to scale the difference between the remaining initial- and goal-state variables:
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4.1 Determining an Intermediate Target

γ =
r

d

θ′ = θinit + ANG_DIST(θinit, θgoal) · γ

v′ = vinit + (vgoal − vinit) · γ

ϕ′ = ϕinit + (ϕgoal − ϕinit) · γ

In the above set of equations, ANG_DIST stands for the angular distance.

The resulting new intermediate goal x′ = (x′, y′, θ′, v′, ϕ) could subsequently be
used as the target state for a complete rollout of the RL-policy, with the goal of
reaching the intermediate goal (within the defined tolerances for position and orien-
tation). Summarizing the scaling procedure described above under the function-name
SCALE(xnearest,xrand, r), this approach is outlined in Algorithm 9.

Algorithm 9 SINGLE_INTERMEDIATE_GOAL(xnearest,xrand, rmax)
1: if d > rmax then
2: x′ ← SCALE(xnearest,xrand, rmax)
3: else
4: x′ ← xrand

5: end if
6: U, X ← FULL_POLICY_ROLLOUT(xnearest,x

′)
7: return U, X

The problem with the single-intermediate-goal approach is, that it empirically leads
to curvy paths. While the intermediate state x′ lies in the general direction of the goal,
it is generally not on the optimal path to the target for the kinodynamic systems. Trying
to fully reach both the orientation and position goal in one rollout can therefore be
counterproductive. Figure 4.1 illustrates this problem.

Figure 4.1: Single-intermediate-goal generation (left) and resulting trajectory (right).
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4.1 Determining an Intermediate Target

The poor results for this initial extension mode, lead us to the design of an
intermediate-goal-per-step approach. Instead of generating one intermediate goal and
then trying to reach it, we use the scaling approach introduced above once for each new
step, in a sliding-window fashion.

Algorithm 10 INTERMEDIATE_GOAL_PER_STEP(xnear,xrand, rmax, Nsteps)
1: i← 0
2: U← ∅
3: X← ∅
4: xlast ← xnear

5: while i < Nsteps do
6: if d > rmax then
7: x′ ← SCALE(xlast,xrand, rmax)
8: else
9: x′ ← xrand

10: end if
11: x← TRANSFORM(xlast,x

′
goal)

12: Ui,Xi ← RL_POLICY_STEP(xlast)
13: x← TRANSFORM_BACK(x,x′

goal)
14: U← U ∪ {Ui}
15: X← X ∪ {Xi}
16: i← i+ 1
17: if x ∈ Xgoal then
18: break
19: end if
20: end while
21: return U,X, i ·∆t

The pseudocode in Algorithm 10 describes the general idea. The RL-policy is given
an initial state xnear, a goal state xrand, as well as the parameters extension radius rmax

and maximum steps Nsteps. The propagation loop runs until it reaches the goal region
or the maximum of Nmax steps, whatever happens first. Before each query of the policy,
we determine an intermediate goal using (GET_INTERMEDIATE_GOAL) and trans-
form the robot’s pose into the intermediate goal’s frame (TRANSFORM) (analog to the
transformation described in Section 3.3). The RL-policy is subsequently called for one
step (RL_POLICY_STEP), based on this transformed initial pose. The resulting next
state is then transformed back into the initial (world-)frame and appended to the return
trajectory. The first 3 steps of a possible extension attempt based on this approach are
visualized in Figure 4.2. The advantage of the intermediate-goal-per-step approach is,
that it leads to superior state-exploration, as the tree expansion is pulled towards the
originally sampled xrand instead of the intermediate goal.

38



4.2 Exporting the Trained Model

Figure 4.2: First 3 steps of the intermediate-goal-per-step approach.

4.2 Exporting the Trained Model

As our first experiments revealed that querying the control policies using the default
stable-baselines3 API was taking longer than we expected, we decided to export the
model to the standardized ONNX format and use the optimized ONNX-runtime [45] for
python instead. Figure 4.3 shows the analysis of the querying-times of 1000 extension-
steps (without the sliding-window mode) using either the ONNX-runtime or stable-
baselines-3, visualized as a boxplot. The boxes span 50% and the whiskers 75% of the
sample-results. As can be seen, the mean-runtime of the ONNX-version is significantly
shorter and has less variance than the stable-baselines version.

Figure 4.3: Comparing the runtime of querying the trained network, using the stable-
baselines 3 interface (right), and the ONNX-runtime (left).
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4.3 Integration into AO-x

4.3 Integration into AO-x

As the target of the thesis is to explore the impact of the RL-policy integration on asymp-
totically optimal sampling-based motion planning, we integrate the RL enhanced RRT
planner into the AO-x framework proposed by Hauser et al. [28] which we already
introduced in Section 2.1.3.

As described, the integration is fairly straightforward. We mainly need to supplement
the system’s state space with an additional dimension - the cost-to-come c, meaning the
number of steps taken from the tree root before reaching a particular state. The cost-
dimension is integrated into both the state sampling and the nearest-neighbor search
(with a comparatively low weight). For the sampling, we follow the approach described
by Kleinbort et al. in their refined AO-x analysis [46], and sample the cost from [0, cmax],
where cmax is the current cost boundary of the iteration.

Initially we run the base RRT algorithm once with no cost boundary, while the max
sampled cost cmax is set to the maximum cost currently observed in the tree. After this
initial round found a feasible solution, all subsequent iterations are provided with the last
attempt’s cost as the boundary. The motion planning query runs until a set maximum
runtime is reached, at which point the last found solution is returned. Both the initial
AO-x paper [28] and the subsequent analysis in [46] propose pruning the tree between
iterations as an enhancement. This did however not significantly improve the runtime of
our planners in our preliminary test-runs, and we therefore chose to use the basic version
of the algorithm instead, in which the base-planner builds a new tree for each query.

Algorithm 11 AO-RRT(xinit,xgoal, tmax)
1: c←∞
2: U← ∅
3: X← ∅
4: while current-runtime < tmax do
5: U,X, c← RRT (xinit,xgoal, c)
6: end while
7: return U,X

4.4 Impact on the Probabilistic Completeness

When integrating the RL-planner in the way we described in the previous sections, one
has to consider the drawbacks the RL-extension has regarding the probabilistic com-
pleteness of the overall system. While this theoretical attribute was proven for RRT
with extension based on Monte-Carlo Propagation and a randomly sampled timestep,
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4.4 Impact on the Probabilistic Completeness

this does not necessarily transfer to RRT with a RL-policy based extension step. The
causes for this are twofold. First, the behavior of the RL-agent is based on the output of a
neural network. Proving probabilistic completeness, would necessitate making assump-
tions on the general behavior of the network which we currently can not achieve in a
theoretical sound way. Second, as the RL-policy is trained and deployed in an obstacle-
free environment, there might be situations where, depending on the dynamical bounds
of the system, the agent might nearly always return plans, which are infeasible in the
global workspace. Consider for example the edge case visualized in Figure 4.4. In this
map, the car needs to drive backwards to reach its goal. Given the velocity controlled
car and a configuration with a relatively narrow turning radius and a significantly higher
absolute velocity forward than backwards, the optimal strategy in the obstacle free en-
vironment might be to drive a forward curve instead of backwards, for most if not all
possible collision free samples xsamp ∈ Xfree.

Figure 4.4: Scenario in which it would be impossible for the RL-RRT approach to find
the existing solution, for specific dynamical configurations. The initial state
is drawn yellow, the goal state grey.

One way for the system to still achieve probabilistic completeness however, is to
introduce a (small) chance, that the extension step uses Random Propagation instead
of the RL-policy. While we did not do this in the system we evaluated, it would be
straight-forward to add this implementation detail in any possible future deployment.
For further ideas regarding this topic, we refer to Section 6.

In the following Section we will present the approach we took for the evaluation of
the integrated system, before presenting the results we observed.
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5 Evaluation

In this chapter, we present the setup we used to evaluate the performance of our inte-
grated system as well as the results we observed.

5.1 Setup

To evaluate the performance of the RL-enhanced Motion Planning System, we compare
it against two alternative candidates for the extension step of RRT:

• Monte-Carlo Propagation (MCP): Random (valid) controls propagated for a
random amount of time (∆t ∈ [0.1, 5]s)

• MCP-Guided: Similar to MCP, but instead of only simulating once, we sam-
ple and simulate 10 different control-vector-time-tuples and select the one which
comes closest to the extension target.

The resulting 3 versions of RRT (RRT-RL, RRT-MCP and RRT-MCP-Guided) were
integrated into the AO-x framework according to the method described in 4.3 and
queried for both robotic systems in two different maps we designed. The evaluated
maps are visualized in Figure 5.1. The first, Bugtrap, features a slightly easier wide-
opening variant of the often used bugtrap problem [28]. The second map consists of a
simple maze in which the robot needs to navigate from the start-state to goal-region by
following a zigzag-course. Again, a commonly used map idea, similar to the one used
for the evaluation of PRM-RL [36] for example.

Figure 5.1: Evaluation Maps: Bugtrap (left) and ZigZag (right)

In our comparison of the different extension methods, we focus on two different met-
rics, the success ratio (the percentage of runs that found at least one solution to the
motion planning problem) and the total path-execution-time ∆tpath. While the former is
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5.2 First-Order Car

a measure of how fast and reliable the feasible motion planning problem is solved, the
latter shows the quality of the found solution, as well as its convergence rate over time.

For the evaluation experiments, we use our own python-implementation of the AO-
RRT planner. Together with the policy-training-tools, and the implementation of the
overall experiment setup, it can be found on GitHub1.

In the following we will present the result of the described evaluation setup, structured
by the targeted robot system.

5.2 First-Order Car

Controlling the first order car-like system, the RL-based approach achieved 100%
success-rate significantly faster than both MCP-based versions in both of the two maps
(see the bottom section of Figures 5.2 and 5.3). The guided MCP version had the worst
performance regarding this metric, reaching 100% roughly 50 seconds later than the
one-shot MCP version in the Bugtrap map. In ZigZag the difference is even more stark,
with a gap of about two minutes. The RL-enhanced system is again exhibiting supe-
rior performance in our second metric, the path-execution-time ∆tpath, which is shown
in the top section of the Figure 5.2, where the solid lines represent the median of the
best (shortest) path-execution-time, of all planner queries at this point in time (set to
infinity, if no solution was found yet), starting at the timestep at which at least 50% of
planners have found a solution. The standard deviation is also visualized, starting at
100% success rate. As shown in the plot, the initial trajectories found by our system
are noticeably shorter, then both MCP planners. Interestingly though, the performance
of MCP and MCP-Guided is flipped compared to the success rate. Regarding the path-
execution-time, MCP-Guided starts lower than MCP and keeps this position until the
end of the evaluation runtime.

While the solution-quality improves quite a bit in the early stages, for all planners, it is
rather stagnant in the later stage of the runtime. As expected (and noted by other authors
[28]), the algorithm spends a large amount of its runtime for small scale improvements
in the end, while achieving larger scale improvements comparatively fast in the early
stages.

1https://github.com/alexanderweingart/rl-sbmp
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5.2 First-Order Car
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Figure 5.2: 25 runs of AO-RRT for the first-order system in the Bugtrap map.
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Figure 5.3: 25 runs of AO-RRT for the first-order system in the ZigZag map.
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5.3 Second-Order Car

The second-order car-like system proved to be more difficult for all planner variants.
Like for the first-order car, the RL-enhanced variant was able to get to a 100% success-
rate faster, while achieving superior solution quality than both alternatives. While MCP
and MCP-Guided are fairly close to each other regarding the path-execution-time in the
Bugtrap map, MCP-Guided outperformed the unguided version in ZigZag. This is only
true regarding the solution quality though, as again mirroring the results from the first-
order system, MCP-Guided is significantly slower to reach 100% success rate in the
first map. In the second, there were even some runs, where no solution was found at all,
which is why the success rate never reaches 100%.

20

40

60

80

t p
at

h
[s

]

0 50 100 150 200 250
t [s]

0

20

40

60

80

100

su
cc

es
s [

%
]

median second-order-car-bugtrap-rl
std
median second-order-car-bugtrap-mcp
median second-order-car-bugtrap-mcp-guided

Figure 5.4: 25 runs of AO-RRT for the second-order system in the Bugtrap map.
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Figure 5.5: 25 runs of AO-RRT for the second-order system in the ZigZag map.
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5.4 Examining the Trajectory Progression

To investigate the trajectories found by the compared planners, we select one set of
(intermediate-)trajectories for each variant in the ZigZag map and the first-order car-like
system. The specific run was selected based on the number of intermediate trajectories.
We choose runs for each system where 6 trajectories where found as part of the solving
attempt. The results can be seen in Figure 5.4. In the selected trajectory progressions,
we can see that compared to MCP and MCP-Guided, the trajectories of the RL-variant
feature more straight sections. Figure 5.4 visualizes the car states on the final trajectory
of the runs shown in Figure 5.4. As the time-interval between states on the trajectory
is fixed, the visualization enables an understanding of the velocities the car exhibits
while executing the motion plan. Sections where the car is moving faster, show more of
the car’s black roof. In this way, it can be seen, that the motion plan produced by the
RL-variant is significantly faster in most sections of plan. This also mirrors the results
discussed in 5.2.
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Figure 5.6: Trajectory progression in the ZigZag map controlling the first-order car.
From top to bottom: AO-RRT-MCP, AO-RRT-MCP-Guided, AO-RRT-RL.
Darker color indicates newer trajectory.
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Figure 5.7: Final trajectory in the ZigZag map controlling the first-order car. From top
to bottom: AO-RRT-MCP, AO-RRT-MCP-Guided, AO-RRT-RL.
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5.5 Tree Growth

To get a better picture of the differences and similarities between the three evaluated
variants, it can be interesting to analyze how their state-space-tree grows. In the follow-
ing we present example runs for each variant guiding the first-order-car system through
the Bugtrap map. To generate the trees, we modified our AO-RRT setup to continue the
first round (without cost-boundary) even after a motion plan was found. The trees were
plotted after 100, 250 and 500 extension attempts.

5.5.1 MCP

Figure 5.8: RRT-MCP: Tree growth after 100, 250 and 500 samples.

In the MCP version, a significant amount of extension attempts are "wasted" on explor-
ing the inside of the bugtrap structure before managing to "escape". At 100 samples,
the first few branches of the tree grow in the open space. At 500 samples, the tree is
covering a fair amount of configuration space, but none of the leafs are inside the goal
region.
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5.5 Tree Growth

5.5.2 MCP-Guided

Figure 5.9: RRT-MCP-Guided: Tree growth after 100, 250 and 500 samples.

The guided version of MCP also struggles to escape the trap, with only one branch
escaping at 100 extension attempts. Afterwards however, the guided approach coupled
with the applied goal bias (Pgoal = 0.01), is clearly growing towards the goal region. At
the 500-extension-step-mark, some leafs come fairly close to the target configuration.

5.5.3 RL

Figure 5.10: RRT-RL: Tree growth after 100, 250 and 500 samples.

Compared to the two trees above, the one built with the RL-extension step manages to
escape the bugtrap structure earlier. At 100 steps, the tree is already exploring far into the
map, with some leafs coming close to the goal region. At 250 steps, the configuration
space is already covered with many states and their connecting trajectories. At 500
steps, we can see, that many leafs are placed close to or inside the goal region. When
comparing the motions in between the node-states with the other two approaches, it can
be noticed, that the curves of the extension trajectories are a lot sharper and the tree
features a noticeable amount of circles.
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6 Discussion

In this section we will discuss the implications of the results presented in Chapter 5, as
well as the possible avenues for future work.

6.1 Lessons Learned While Training The Policies

The first step of our approach was to train control policies for the robotic systems we
target. Using the state-of-the-art algorithm PPO, we were able to train a near-optimal
control policy for the first-order car, using a minimalistic reward function design, in a
reasonable amount of time (training the model we used for the later experiments took
roughly 54 minutes on our CPU-cluster, without much optimization regarding paral-
lelization). The reward function we used does not add additional parameters to the
system and therefore does not increase the overall parameter-tuning-complexity.

When applying the same approach to the second order car however, we were met with
more difficulties. While this was expected, based on the added dynamic complexity and
the additional state-space dimensions, it is interesting that deploying the denser reward
function was not fruitful in our case. While we cannot rule out, that there might exist
a set of parameters, that enables the design to achieve better results, finding these pa-
rameters can be time-intensive, especially considering, that there are already numerous
parameters to tune for PPO itself.

This is where the Curriculum Learning approach we used shines. Using simple trans-
formations of random-rollout trajectories, we were able to produce an effective curricu-
lum, enabling the agent to learn the basic dynamics of the environment before graduating
to open sampling, i.e. the actual target environment.

When studying the result of the curriculum based training, presented in Subsection
3.4.2.2, it can be noticed, that the agent’s performance barely changes when increasing
the size of the sampling pool. The first real impact is visible after sampling is switched to
fully-random (the original target domain). This finding implies that further optimization
of the approach might be possible. Instead of slowly increasing the amount of easier
samples the agents sees, and thereby fragmenting the training into 5 different phases,
only 2 phases might be sufficient as well.
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6.2 Investigating the Performance of the RL based

Planner

In our experiments, the performance of the AO-RRT planner was significantly increased
by using the RL-policy as the local planner. The RL-variant found its initial solution
quicker and more reliable than both MCP-based variants while producing noticeably
faster motion plans for both dynamical systems in both maps we investigated. The
differences were especially pronounced with the more complex dynamics of the second-
order car-like system in the larger and more maze-like ZigZag map, where the planner
variant with the median cost of the planner with the RL-integration was only a third of
its next best counter-part (which did not achieve a 100% success rate during the runtime
of the experiment). While these results are promising, we take a closer look on some
aspects of the experiment results to get a better picture of the overall impact, the RL-
extension step has on the AO-RRT planner.

6.2.1 Comparing the Time-To-First-Success

While the plots in Figures 5.2 - 5.5 already visualize the times at which the planners
achieve their first success, it is interesting to compare them through a different lens.
Instead of plotting the progression of the success-percentage over time, we can compare
the distribution of their time-to-first-success tsuccess. In Figure 6.2.1 they are visualized
as boxplots for all extension variants, with all dynamics and in all maps. In the figure, the
boxes signify the Interquartile Range (IQR), meaning 25% of the results lie below and
25% above the boundaries of each box. The whiskers are drawn at 1.5 times the IQR.
The line inside each box indicates the median. The plots again emphasize, that in our
evaluation experiments, RRT-RL needed significantly less time to find the first feasible
solution, while providing a more reliable performance as shown by the significantly
smaller spread of the results.
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Figure 6.1: Boxplot of the time the planners took to find the initial solution in the differ-
ent maps and with the different cars.

6.2.2 Query Speeds

One of the trade-offs of the RL-based approach compared to MCP and MCP-Guided is
the significantly increased time needed for each individual extension. The Boxplot in
6.2 shows the query times of 1000 random pairs of start and target configurations for the
first-order car using the RL, MCP and MCP-Guided (with K = 10) versions. As can be
seen the median query time for the RL-extension step is 6 times longer than the one for
MCP-Guided and nearly 70 longer than the one for the one shot version (MCP) in our
experiments. While it is not in itself surprising, that the RL-variant, which queries the
trained actor-network multiple times, is slower than the other two approaches, these re-
sults highlight, that the usefulness of the RL-extensions seem to outweigh the significant
performance advantages of the Monte-Carlo approaches.
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Figure 6.2: Boxplot of the runtime for 1000 random query pairs for the first-order car
system

6.2.3 Comparing the Extension Steps

One way of analyzing the differing extension behavior of the RL-local-planner is by
comparing the planners regarding the tree growth they promote. The MCP planners
sample the control for each step uniformly from the valid control-space. When look-
ing at the tree progression in Figure 5.5.1, the results of this can clearly be seen, as the
growing tree features a wide variety of curves produced by diverse combinations of lin-
ear velocity and steering angle. As a steering angle very close to 0 is unlikely however,
the tree features barely any straight lines. This stands in stark contrast to the tree pro-
gression of the RL-integration, seen in Figure 5.5.3, which features numerous straight
connections. The variety of curves is also much smaller in the RL-version and a clear
bias towards sharp turns can be seen.

These differences in the distribution of the applied controls obviously influence the fi-
nal trajectory heavily. As the RL-planner produces faster and straighter extension steps,
the resulting global motion plan is also generally faster than for the other planners.

6.2.4 Final Connection to the Goal Region

As noted in section 5.5, all planners in our evaluation use a goal-bias of 0.01, which
means that the global target-state is sampled as the extension target with a probability of
1%, each iteration. If there are nodes in a suitable distance to the goal region, the plan-
ners have a chance to reach it and successfully terminate the motion planning attempt.
One of the main advantages of the RL-integration is that it significantly improves the
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success chances of this final extension, as compared to the random-control variants, it is
able to closely approach given target states with complex maneuvers. This attribute is
visible in Figure 5.4. Where both MCP based versions feature complex loops and un-
necessary movement around the target, the approach of the RL-system is significantly
more direct in this final section of the trajectory.

6.2.5 MCP vs. MCP-Guided

While we mainly use the MCP-variants as a comparison target for the evaluation of our
RL-integrated planner, it is nonetheless interesting to also compare the performance of
both to each other. In our experiments the MCP was significantly faster to reach the
50% success-rate for both dynamics in both maps, than its guided counter-part. This is
interesting, as intuitively it would seem like the selection behavior of the MCP-Guided
approach should when paired with the used goal-bias should be more quickly guide the
tree growth towards the goal region. We think that one reason for these results is, that
while the tree-growth can better targeted with MCP-Guided, the fully random extension
actually favors the MCP variant in the early stage of the bugtrap exploration, as well as
in the maze-like ZigZag structures. In both selecting the extension-trajectory based on
the goal bias can actually be counterproductive, as moving sideways often guides the
system into collision with the obstacles.

6.2.6 Convergence Rate

While the integrated AO-RRT-RL planner finds its initial solutions quick and is able
to improve the solution quality in subsequent iterations, the rate of improvement slows
down fast. The plots presented in Section 5.2 and 5.3 show that most of computational
time is used for rather small improvements of the quality. The dynamic is also visible
in both alternative planner variants. This behavior is not atypical for AO-x and in fact
many asymptotically optimal sampling motion planners, as the benchmarking done by
Hönig et al. [47] shows. In practice, this attribute motivates the combination of AO-
SBMP with other planning approaches, like numerical optimization. Using AO-SBMP
to find a high-quality guess which can then be further improved by an optimization based
planner can be an effective strategy to use the qualities of both planning-methods while
compensating each other’s shortcomings.
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6.3 Future Work

The results of the thesis open up various avenues for future research. In the following
we will discuss the ones we find most promising.

6.3.1 Integrating The Critic Network Into The
Nearest-Neighbor Search

As described in Section 3 we were able to train a near-optimal control policy for both
the first- and second-order car-like system using the minimal reward function depicted
in Equation 3.21. In this version of the reward function, the reward is solely based on the
number of steps the agent needs to take to go from the initial to the target state. Using
γ = 1, the value of any state x, when following the optimal policy π∗ would be

v∗(x) = 1− n

Nmax

(6.1)

with n describing the minimum-number of steps needed to reach the target. We can
reformulate this equation as

n = (1− v∗(x)) ·Nmax (6.2)

If we would have a good estimation of the value-function V (x), we could calculate a
usable estimation of the steps-to-target with

n̂ = (1− V (x)) ·Nmax (6.3)

This estimation would in turn provide a good metric for the nearest-neighbor search for
sampling-based planners. In future research it could be explored if the critic-network
trained as part of an actor-critic based training of control policies can be integrated
into a distance estimator, like Chiang et al. suggested in their Discussion of RL-RRT
[39]. To compensate for the additional runtime compared to the much less accurate, but
also much faster weighted euclidean distance approximation commonly deployed, one
could utilize a hierarchical approach similar to the one the authors proposed for their
(separately trained) distance-approximator.
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6.3.2 Integration Into Other Probabilistically Optimal
Planning Frameworks

While the AO-x framework we explored provides straightforward integration and com-
petitive performance, it would be interesting to explore and compare the performance
impact of the trained RL-control policies into other state-of-the-art asymptotically opti-
mal motion planners. A great candidate for this could be Stable Sparse RRT*, originally
proposed by Li et al. [27].

6.3.3 Investigating Obstacle-Aware Policies

While the use of obstacle-unaware control policies proved to be an efficient solution for
our target dynamics in the evaluated maps, they can significantly hinder the system’s
ability to find solutions in some scenarios, as outlined in Section 4.4. While integrating
a small amount of randomness in the extension step can combat these issues, it might
hinder the performance. Another approach would be to introduce obstacle-awareness
for the RL-agent, like proposed by Chiang et al. [39] and Faust et al. [36]. While
this approach significantly inflates the agent’s observation space and complicates the
local-planner integration, the chance of producing feasible trajectories should be im-
proved. In future research it would be interesting to compare the performance of these
two strategies directly.
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7 Conclusion

The problem of generating motion plans to guide complex robotic systems through
their environment without collisions or constraint-violations has inspired many different
method-classes in the field of motion planning, like search- or numerical-optimization-
based planning. One of these, focused on fast probabilistically complete or even optimal
planning in high-dimensional state-spaces, is Sampling-Based Motion Planning.

Planners of this class utilize modern high-performant collision checking modules to
build a tree- or graph-based representation of the state-space by sampling collision-
free states, selecting a suitable node and extending this previously discovered free state
towards the sampled one with a collision-free trajectory.

The implementation of the extension primitive of this approach can be challenging for
kinodynamic systems without a known efficient analytical steering function for optimal
or near-optimal connections. This motivated the use of Reinforcement Learning to train
a neural network based control-agent to guide the extensions instead.

To evaluate this approach, we designed training environments for two car-like robotic
systems. The first is controlled via linear-velocity and steering-angle, while the sec-
ond is controlled via linear-acceleration and the angular velocity of the steering angle.
The control-agents were trained in obstacle-free and smaller-scale versions of the tar-
get workspace. For the training setup, we utilized Proximal Policy Optimization, which
we supplemented with a custom Curriculum Learning approach in the case of the sec-
ond order car. Based on the translational- and rotational invariances inherent in our
target-dynamics we designed an automatic way of generating training sets of starting
configurations with a known maximum solution cost. Using these training sets as our
curriculum, we managed to significantly speed up the training process.

After successfully training policies for both target systems, they were subsequently
used to build a local-planner module for the extension step of one of the most promi-
nent sampling-based motion planners, RRT. The resulting RL-RRT planner, was then
integrated into the asymptotically optimal motion planning framework AO-x and eval-
uated for the two target systems, in two different scenarios, comparing them with two
Monte-Carlo based alternatives for the extension step.

In our evaluation, we observed, that the version with the RL extension step signifi-
cantly outperformed the two alternatives in both scenarios and for both robot systems.
RL-RRT found its solutions faster and more reliably than both MCP and MCP-Guided.
Both the initial and the final trajectories of AO-RL-RRT had a significantly smaller
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path-execution-time than the MCP based alternatives. Guiding the second-order car in
the ZigZag map, its median path-execution-time was less than half compared to MCP-

Guided.
Our visual analysis of the tree growth promoted by the RL-integration suggests that

RL-RRT integration explores the state space faster than MCP and MCP-Guided.
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Appendix A

Reinforcement Learning Parameters

Parameter Name Value
learning_rate 7.77e-05
n_steps 2048
batch_size 64
n_epochs 10
gamma 0.999
gae_lambda 0.95
clip_range 0.2
clip_range_vf 0.5
normalize_advantage True
ent_coef 0.01
vf_coef 0.5
max_grad_norm 0.5
use_sde False
sde_sample_freq -1
target_kl None
device auto

Table 7.1: PPO parameters used for the training of both dynamical systems. These pa-
rameters are based on the PPO defaults in stable-baselines 3 [44], which
we modified until we got useful results. While these were sufficient in our
case (in the second order car system in combination with our curriculum ap-
proach), they are probably not the best possible combination and sophisti-
cated automated parameter tuning approaches might find sets which work
even better.
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