
Automatic Gain Tuning for Multirotors Using Differentiable
Optimization

Achim von Prittwitz, Khaled Wahba, and Wolfgang Hönig

I. INTRODUCTION

Robust control in robotics applications such as quadro-
tors, humanoid, and quadrupedal systems, requires effective
tuning of controller gains. Traditional manual tuning, though
common, is inefficient and expert-dependent, motivating the
development of automatic tuning techniques.

For legged robots, automatic gain tuning has shown great
promise in improving control stability. For humanoid robots,
momentum-based control strategies have been applied suc-
cessfully to balancing and locomotion tasks, optimizing joint
space dynamics [1]. Similarly, quadrupeds have benefited
from Bayesian optimization techniques like [2], which tune
controllers while ensuring safe exploration. This approach
has been validated in locomotion tasks, balancing safety and
performance, though computational demands increase with
higher-dimensional spaces.

For aerial robots, methods like the work presented in
[3] use gradient-based optimization to improve tracking
performance in quadrotors, but they rely on informed initial
guesses, limiting applicability to unknown systems. Safe
Bayesian optimization has also been applied to uncrewed
aerial vehicles (UAVs), ensuring safe parameter exploration
under dynamic conditions, as shown in [4]. Additionally,
gain scheduling has been explored for morphing UAVs,
dynamically adjusting control parameters to maintain consis-
tent performance across different configurations [5]. Multi-
objective optimization (MOO) has been used for aerial
manipulators to balance competing goals like minimizing
error and enhancing stability [6].

Most prior works for multirotor gain tuning suffer from
the curse of dimensionality [4] and can only tune a few
gains, or require a good initial guess from an expert [3, 4].
In this work, we introduce a novel incremental trajectory
length scheduling algorithm that helps stabilize differen-
tiable optimization problems that reason over long time
horizons. On the example of gain tuning for multirotors, we
demonstrate that our approach is able to converge to stable
control gains using uninformed initial guesses. Moreover, the
resulting gains outperform the expertly tuned gains in terms
of tracking error in many cases.

II. APPROACH

The dynamics of a single multirotor is modeled as a 6
degrees-of-freedom floating rigid body with mass m and di-

All authors are with the Faculty of Electrical Engineering and Computer
Science, Technical University of Berlin, Berlin, Germany.

The research was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) - 448549715.

Algorithm 1: Incremental trajectory length schedul-
ing for automatic gain tuning

1 G ← InitializeGains()
2 T ← T0 ▷ Initial length of trajectories
3 D ← SliceTrajectory(T )
4 ℓbest ←∞ ▷ Current best loss
5 idec ← 0 ▷ Iterations since decrease
6 for n = 1, 2, . . . do
7 ypred ← SimulateMultirotorWithController(D)
8 ℓ← ComputeLoss(ypred,D)
9 G ← GradientStep(G, ℓ)

10 G ← ClampParameters(G)
11 if ℓ < ℓbest then
12 ℓbest ← ℓ

13 else
14 idec ← idec + 1
15 if idec > P then
16 T ← 2T ▷ Double trajectory length
17 if T > Tmax then
18 T ← Tmax

19 D ← SliceTrajectory(T)
20 ℓbest ←∞
21 idec ← 0

agonal moment of inertia J. The multirotor’s state comprises
of the global position p ∈ R3, global velocity v ∈ R3,
attitude rotation matrix R ∈ SO(3) and body angular
velocity ω ∈ R3. The dynamics can be expressed using
Newton-Euler [7] equations of motion as follows

ṗ = v, mv̇ = mg +Rfu, (1a)

Ṙ = Rω̂, Jω̇ = Jω × ω + τu, (1b)

where ·̂ denotes a skew-symmetric mapping R3 → so(3);
g = (0, 0,−g)⊤ is the gravity vector; fu = (0, 0, f)⊤ and
τu = (τx, τy, τz)

⊤ are the total thrust and body torques from
the rotors, respectively. An exponentially stable geometric
controller for a multirotor computes the desired force and
torques as follows [8]:

f = −(−Kpep −Kvev −mg +mv̇d) ·Re3, (2a)
τu = −KReR −Kωeω + ω × Jω

− J(ω̂R⊤Rdωd −R⊤Rdω̇d),
(2b)

where e3 = (0, 0, 1)⊤, the subscript d refers to the desired
reference trajectory, ep, ev, eR, eω ∈ R3 are errors with
respect to this reference (mathematically defined in [8]),
and Kp, Kv, KR, Kω ∈ R3×3 are diagonal positive gain
matrices that need to be tuned. The twelve non-zero elements
of the gain matrices are the parameter set G that we optimize.



TABLE I
GAINS AFTER AUTOMATIC TUNING ON FIGURE-8 TRAJECTORY.

Gain Kp Kv KR Kω

axis x y z x y z x y z x y z
initial 1 1 1 1 1 1 1 1 1 1 1 1

auto-tuned 2.5613 2.4822 1.0091 9.5109 11.2808 1.0125 0.0265 0.0738 0.0001 0.0026 0.0020 9.706e-6
hand-tuned 9 9 9 7 7 7 0.0055 0.0055 0.0055 0.0013 0.0013 0.0013

TABLE II
TRACKING ERRORS FOR TEST TRAJECTORIES. LOWER (BOLD) VALUES ARE BETTER. THE FIGURE-8 TRAJECTORY WAS USED FOR TRAINING.

avg. Errors Lp Lv LR Lω
hand-tuned auto-tuned hand-tuned auto-tuned hand-tuned auto-tuned hand-tuned auto-tuned

Figure-8 1.345e-5 1.023e-5 2.430e-4 8.286e-6 6.801e-3 5.600e-3 1.741e-3 9.902e-4
Circle 2.269e-6 9.658e-6 1.470e-5 1.589e-5 1.072e-8 7.402e-9 2.802e-4 2.005e-4
Helix 4.886e-6 8.888e-6 7.360e-5 4.368e-6 1.737e-3 1.851e-3 1.453e-3 1.550e-3

Random Waypoints 2.206e-6 8.777e-6 1.735e-5 6.273e-6 1.318e-3 1.336e-3 6.332e-5 4.836e-5

We can simulate over a time horizon T by com-
posing the simulator and controller, e.g., pt+2 =
sim(ctrl(sim(ctrl(pt,pdt)),pdt+1)) if simplifying for the
positional part for brevity. Here sim is the simulator im-
plementing (1) and ctrl is the controller implementing (2).
Since all operations are differentiable, we use PyTorch [9]
to automatically compute gradients. With untuned controller
gains the tracking is highly unstable and catastrophic diver-
gence already occurs after a few steps. To prevent this diver-
gence and consequently numeric overflows and exploding
gradients, we use a scheduled approach, see Algorithm 1.
First we tune the gains using only slices of T0 steps were
T0 is a hyperparameter (Line 2). The model is trained to
convergence i.e. until the loss does not decrease over a
number of P epochs (Line 7 to Line 15). After the model
converges, the length of the trajectory slices T is doubled
(Line 16). This procedure is repeated until the optimization
is done for the whole trajectory or a certain number of steps
Tmax to prevent the model from getting too deep. To prevent
the procedure from generating unreasonable gains, we clamp
the gains to be not smaller than 10−8 (Line 10). This is
necessary as negative gains violate the stability assumptions
of the controller. In addition to clamping the gains, we
also clip the gradients to be within a 10% range of the
current parameter values (not shown in the pseudo code).
This approach allows for stable training in the beginning
and the capture of long term behavior in the end. As a loss
function we used the mean squared error for the position,
velocity, rotation and attitude rate tracking errors:

min
Kp,Kv,KR,Kω

λpLp + λvLv + λRLR + λωLω, (3a)

Lp =

T∑
t=1

ep
2
t , Lv =

T∑
t=1

ev
2
t , (3b)

LR =

T∑
t=1

eR
2
t , Lω =

T∑
t=1

eω
2
t , (3c)

where λ{p,v,R,ω} are weighting parameters.

III. RESULTS

The controller is tuned on a figure-8 trajectory in the
xy-plane with a control frequency of 100Hz. The total
duration of the trajectory is 7.28 seconds. Although the
poor initial guesses of the gains (see Table I) do not allow
for the simulation of the whole trajectory due to numerical
instability, we obtain gains which enable stable control after
running the optimization loop for 500 epochs. The initial
length of the trajectory slices is T0 = 3 and as maximum
trajectory length we chose Tmax = 400. At a sampling
rate of 100Hz this is equivalent to simulating 4 seconds
of flight. The patience for the scheduling process is set to
P = 5. Smaller P values lead to too fast scheduling whereas
larger P values lead to slow scheduling wasting computing
resources on small values of T . For our loss function, we
weigh all the components equally, i.e. λp = λv = λR =
λω = 1. The tuning took 40 minutes on a Laptop computer
with a Intel i7-10510U CPU.

The resulting gains, shown in Table I, achieve better
tracking on the training trajectory and stable behavior on
the test trajectories, see Table II. Note that we use an initial
guess of 1.0 for all gains to simulate an uninformed guess.
This is in contrast to prior work which used initial values
which already allowed for stable control [3]. The gains for
the z components are much smaller than the gains for the
x and y components. We believe that this indicates that the
chosen training trajectory did not sufficiently excite the z
axis.

IV. CONCLUSION

The idea of scheduling the optimization time horizon
to balance between long-term behavior and stability shows
promising results on the example of multirotor gain tuning.
Further investigation on how the training trajectory and the
initial guesses are influencing the tuned gains is needed.
Moreover, we believe that our scheduling approach’s stability
will enable tackling of higher-dimensional problems. For
example, jointly optimizing unknown system identification
parameters, gains for a state estimator, and control gains.



REFERENCES

[1] D. Pucci, G. Nava, and F. Nori, Automatic gain tuning of a momentum
based balancing controller for humanoid robots, in 2016 ieee-ras 16th
international conference on humanoid robots (humanoids), 2016.

[2] D. Widmer, D. Kang, B. Sukhija, J. Hübotter, A. Krause, and S. Coros,
“Tuning legged locomotion controllers via safe bayesian optimiza-
tion,” in Conference on Robot Learning, PMLR, 2023, pp. 2444–2464.

[3] S. Cheng, M. Kim, L. Song, C. Yang, Y. Jin, S. Wang, and N.
Hovakimyan, “Difftune: Auto-tuning through auto-differentiation,”
IEEE Transactions on Robotics, 2024.

[4] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimiza-
tion with safety constraints: Safe and automatic parameter tuning in
robotics,” Machine Learning, vol. 112, no. 10, pp. 3713–3747, Oct. 1,
2023, ISSN: 1573-0565.

[5] Y. Aboudorra, A. Saini, and A. Franchi, “Gain scheduling position
control for fully-actuated morphing multi-rotor uavs,” in 2024 Inter-
national Conference on Unmanned Aircraft Systems (ICUAS), IEEE,
2024, pp. 15–22.

[6] X. Zhou and X. Zhang, “Multi-objective-optimization-based control
parameters auto-tuning for aerial manipulators,” International Journal
of Advanced Robotic Systems, vol. 16, no. 1, p. 1 729 881 419 828 071,
2019.

[7] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in International Conference on Robotics and
Automation (ICRA), 2011, pp. 2520–2525.

[8] T. Lee, K. Sreenath, and V. Kumar, “Geometric control of cooper-
ating multiple quadrotor uavs with a suspended payload,” in IEEE
Conference on Decision and Control (CDC), 2013, pp. 5510–5515.

[9] J. Ansel et al., “Pytorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation,” in Proceed-
ings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2, ASPLOS 2024, La Jolla, CA, USA, 27 April 2024- 1 May 2024,
R. Gupta, N. B. Abu-Ghazaleh, M. Musuvathi, and D. Tsafrir, Eds.,
ACM, 2024, pp. 929–947.


	Introduction
	Approach
	Results
	Conclusion

