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Abstract

Multirotors have many exciting applications, including entertainment, cooperative
construction, inspection of power lines and off-shore wind parks as well as aerial ad-
ditive manufacturing. Since the motion planning problem for multirotors is known
to be very difficult, approximate solutions are frequently employed. A common ap-
proximation is the use of the differential-flatness property, which allows to compute
and follow polynomial splines as trajectories. Unfortunately, such a model cannot
take the limited motor forces of real multirotors into account and produces conser-
vative motions. Other methods use search- or sampling-based approaches, which are
not applicable when considering the full dynamics. In this work, k-order Markov
optimization (KOMO) and successive convexification (SCvx) were applied to multi-
rotor motion planning problems considering the full dynamic model and compared
extensively. KOMO makes use of the short-term dependency of trajectories to reduce
the dimensionality of the optimization problem and has already proven its maturity
for robotic manipulation. SCvx, on the other hand, is claimed to be well suited for
highly-nonlinear problems of dynamic systems. Both algorithms were used to solve
various problem scenarios, including flying in cluttered environments and recovering
from upside-down positions. The evaluation results show that KOMO and SCvx have
a high success rate for problems requiring solutions close to geometric path constraints
(e.g., obstacle constraints). In highly dynamic cases where the solution hits the input
constraints, only SCvx finds solutions reliably.

Zusammenfassung

Multikopter haben in den letzten Jahren sowohl für akademische als auch industrielle
Anwendungen zunehmend an Bedeutung gewonnen. Sie werden zum Beispiel erfol-
greich für Lichtshows, kooperatives Aufbauen von komplexen Strukturen und zur
Inspektion von Hochspannungsleitungen und off-shore Windanlagen eingesetzt. Die
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Trajektorienplanung für Multikopter gestaltet sich jedoch kompliziert aufgrund ihrer
hochgradig nicht-linearen Bewegungsdifferenzialgleichungen und der hohen Anzahl
an Optimierungsvariablen. Um diese Probleme zu umgehen, werden häufig Approxi-
mationen verwendet. Eine Möglichkeit ist auszunutzen, dass das dynamische Model
eines Multikopters differenziell flach ist. Dies erlaubt Flugbahnen direkt als polyno-
miale Splines vorzugeben. Da dieser Ansatz in der Optimierung die Beschränkun-
gen der Motordrehzahl außer Acht lässt, sind die resultierenden Flugbahnen meist
konservativ. Ansätze, die eine probabilistische oder vollständige Repräsentation des
kollisionsfreien Raumes erstellen, brauchen meist lange, um eine Lösung zu finden,
wenn die nicht-linearen Differenzialgleichungen beachtet werden. Methoden, die die
Trajektorienplanung als mathematisches Problem formulieren hingegen sind in der
Lage, schnell Lösungen zu finden. In dieser Arbeit werden Markov Optimierung
k-ter Ordnung (KOMO) und sukzessive konvexe Approximation (SCvx) als Trajek-
torienplanungsalgorithmen verwendet. KOMO wird bereits für die Bahnplanung von
Industrierobotern erfolgreich eingesetzt, und für SCvx wird davon ausgegangen, dass
sich der Algorithmus besonders für nicht-lineare dynamische Systeme eignet. Beide
Algorithmen wurden anhand von unterschiedlichen Szenarien evaluiert und es stellte
sich heraus, dass KOMO und SCvx eine hohe Erfolgsrate für Probleme aufweisen, bei
denen der Fokus auf der Kollisionsvermeidung liegt. Probleme, bei denen die Grenzen
der Motordrehzahl voll ausgenutzt werden, sind für KOMO deutlich schwieriger zu
lösen. SCvx hingegen findet zuverlässig Lösungen für diese Probleme.
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Chapter 1

Introduction

In recent years, multirotors have risen in popularity in academia and industry due
to their exceptional agility while being technically simple aerial vehicles. Multirotors
are successfully applied in various fields e.g., entertainment [1], cooperative construc-
tion [2], inspection of power lines [3] and off-shore wind parks [4] and aerial additive
manufacturing [5]. Many of these applications require highly autonomous behavior,
raising the need for motion planners that can reliably solve problems requiring com-
plex trajectories. While the mechanical structure of multirotors is simple, controlling
them is challenging due to nonlinear dynamics, complex aerodynamic effects, and
actuation constraints. To plan their movements according to limitations imposed
by their dynamics and surrounding, modern motion planners have to solve complex
problems. While sampling- and search-based approaches to motion planning have
strong theoretical guarantees regarding completeness, optimization-based methods
often provide speed advantages or better quality of the found solutions and will be
used throughout this work. Since the motion planning problem is notoriously difficult
to solve, approximate solutions are frequently applied. A common approximation is
the use of the differential-flatness property of the multirotor model, which allows to
compute and follow splines as trajectories. Unfortunately, such a model cannot take
the limited motor forces of a real multirotor into account and produces conservative
motions. In this work, two algorithms are considered that find solutions making use
of the full dynamics of the model. While successive convexification (SCvx) is claimed
to perform well for highly nonlinear problems for dynamic systems, k-order Markov
optimization (KOMO) has proven its maturity for robotic manipulation. This thesis
aims to evaluate the performance and suitability of KOMO and SCvx for problems
related to multirotor motion planning. Therefore, throughout the work, KOMO and
SCvx are extensively compared.

Contributions:

In this thesis, the following scientific contributions are presented:

1. Extensive experimental evaluation, discussion and comparison of the perfor-
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mance of k-order Markov optimization and successive convexification for mul-
tirotor motion planning

2. Implementation and validation of a successive convexification algorithm using
Python

The thesis is structured as follows. First, a short introduction to multirotors and their
dynamic model is given in chapter 2. Subsequently, related work in the field of motion
planning is presented, where sampling-, search- and optimization-based methods are
discussed. In chapter 3, the concrete motion planning problem is introduced and
the used optimization methods are presented. Additionally, details on implementing
the motion planning problem in the presented algorithmic frameworks are given.
The experimental results are presented and discussed in chapter 4 and the work is
summarized in chapter 5.
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Chapter 2

Background

The following chapter briefly introduces multirotors and the foundations of trajectory
generation.

2.1 Multirotor

Throughout this section, multirotors are compared to other aerial vehicles and the
dynamics of multirotors are described.

2.1.1 Small Unmanned Aerial Vehicles

Common small unmanned aerial vehicles (SUAV) are divided into three different
classes depending on the type of lift generation and the arrangement of the lift gen-
erating structures [6]:

1. Fixed-wing aircraft,

2. Single rotor blade helicopter,

3. Multirotor.

The three different types of SUAV are shown in figure 2-1. In fixed-wing aircrafts
[6], the lift-generating structures (wings) are firmly attached to the vehicle’s airframe.
The airflow generates lift over the special shape of the wings. In order to generate a
lift that counteracts the gravitational force of the vehicle, the vehicle must maintain
a certain airspeed. To achieve this speed, an additional propulsion system is needed.
To take off or land, the aircraft must accelerate to or decelerate from take-off speed,
which prevents a vertical landing or take-off. On the other hand, the advantage of
the fixed-wing structure is its energy efficiency and high possible payload.

3



Single-bladed helicopters [6], on the other hand, can generate lift directly through
rotors. The lift-generating structure is not fixed to the airframe and can rotate relative
to it. The lift is, therefore, not dependent on the vehicle’s translational speed but
on the rotor’s rotational speed, which allows the aircraft to take off without airspeed
(Vertical Take-Off and Landing ) and hover in place. Due to the air resistance of the
rotor, additional structures are needed to compensate for the torque generated by
the air resistance. The overall complexity of a helicopter with only one rotor blade is
higher than that of a fixed-wing aircraft and that of a multirotor and therefore has
higher maintenance costs.

Multirotors [6] are helicopters with three or more rotors used to generate lift. The
lift-generating structures are, therefore, not attached to the vehicle’s airframe. By
using multiple rotors, the torque generated by the drag of the rotors can be balanced
by opposite rotation directions. The simple structure of the multirotor results in high
maneuverability, the ability to hover in place and a simple control strategy using only
the rotor speeds as control inputs. This is an advantage when it comes to solving
highly dynamic problems. In terms of payload, energy efficiency and maintenance
costs due to their low complexity, multirotors are a good compromise between he-
licopters with one rotor blade and fixed-wing aircrafts. Another useful property of
multirotors is redundancy for rotor numbers greater than four, leading to advantages
regarding safety aspects. Therefore, multirotors are well-suited for a variety of tasks.

Figure 2-1: Different types of SUAV: fixed-wing aircraft (left) [7], single rotor blade
helicopter (middle) [8], multirotor (right) [9].

2.1.2 Dynamic Model of a Multirotor

In this section, the dynamic model of a multirotor will be described in detail. The
presented model will later be used to formulate dynamic constraints for the trajectory
optimization problem.

Figure 2-2 shows the schematics of a multirotor for the example of 4, 6 and 8 rotors.
Here 𝜔𝑖 describes the rotational speed of the rotor. To counteract the torque caused
by the air resistance of the rotor, the motors next to each other rotate in opposite
directions. The distance of the rotors to the center of gravity (CoG) is determined by
the arm length 𝑙 and the angular offset from the 𝑖-th arm to 𝑥𝐵 is described by 𝛽𝑖. Two
right-handed coordinate systems are used: the inertial system ℱℐ : {𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼}, which
refers to the origin of the flying volume, and the body system ℱℬ : {𝑥𝐵, 𝑦𝐵, 𝑧𝐵}, which
describes the reference of the multirotor. Here 𝑧𝐼 is permanently aligned with gravity
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Figure 2-2: Multirotor model with different rotor numbers.

𝑔 = [0, 0, 9.81𝑚/𝑠2]𝑇 and 𝑧𝐵 is permanently aligned with the direction of the combined
thrust 𝑓𝑇 generated by the rotors. To describe the state of the multirotor at time 𝑡 the
position of the CoG 𝑝(𝑡) ∈ R3, velocity 𝑣(𝑡) ∈ R3, unit quaternion rotation 𝑞(𝑡) ∈ H
(parametrising the rotation matrix R(𝑞)) and the rotational velocity in the body
frame 𝜔𝐵(𝑡) ∈ R3 are expressed in the state vector 𝑥(𝑡) = [𝑝(𝑡), 𝑣(𝑡), 𝑞(𝑡), 𝜔𝐵(𝑡)]

𝑇 ∈
R13. Where 𝑝(𝑡) and 𝑞(𝑡) together represent transformations of ℱℐ to ℱℬ in 𝑆𝐸(3).
The quaternion orientation representation has several advantages, such as solving the
gimble-lock problem of the Euler angle representation [6] and being numerically more
stable [10] than the representation with rotation matrices. The dynamic model of the
multirotor is obtained by applying the Newton-Euler equations (2.1) for rigid bodies
with 6 degrees of freedom (DoF) [11]. This results in the following relations:

(︂
R(𝑞)𝑓𝑇

𝜏

)︂
=

(︂
𝑚𝐼3 0
0 J

)︂(︂
�̇�
�̇�𝐵

)︂
+

(︂
−𝑔

𝜔𝐵 × J𝜔𝐵

)︂
. (2.1)

Here J denotes the time constant inertia matrix of the entire multirotor, 𝑚 its mass
and 𝜏 the acting torque. The dynamic equations of the multirotor can therefore be
written as:

�̇� = 𝑣 (2.2)

�̇� =
1

𝑚
R(𝑞)𝑓𝑇 + 𝑔 (2.3)

𝑞 =
1

2
𝑞 ⊗

(︂
0
𝜔𝐵

)︂
(2.4)

�̇�𝐵 = J−1(𝜏 − 𝜔𝐵 × J𝜔𝐵). (2.5)

Where the derivative of the quaternion 𝑞 is taken from [10] and ⊗ denotes the quater-
nion multiplication.

The total thrust vector 𝑓𝑇 and the acting torque 𝜏 result from the multirotor geometry
and the acting forces generated by the motors as follows:
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𝑓𝑇 =

⎛⎝ 0
0∑︀𝑛𝑚

𝑖 𝑓𝑖

⎞⎠ (2.6) 𝜏 =

⎛⎝ 𝑙
∑︀𝑛𝑚

𝑖 sin(𝛽𝑖)𝑓𝑖
𝑙
∑︀𝑛𝑚

𝑖 cos(𝛽𝑖)𝑓𝑖
𝜅
∑︀𝑛𝑚

𝑖 𝛼𝑖𝑓𝑖

⎞⎠ . (2.7)

The effective torque around 𝑧𝐵 is caused by the rotor air resistance and is coupled to
the acting motor forces by the torque constant 𝜅. Depending on the rotor’s rotation
direction, the rotor resistance torque acts in a positive or negative direction. This
is taken into account by 𝛼𝑖, which is either +1 or -1 depending on the rotor. The
maximal combined thrust is defined by the thrust-to-weight ratio 𝑟𝑡2𝑤 = 𝑓𝑇,𝑚𝑎𝑥/𝑚.
The total number of forces depends on the type of the multirotor and is described
by the number of motors 𝑛𝑚. The forces 𝑓𝑖 are correlated to the rotor speed by the
thrust coefficient 𝜅𝑓 according to:

𝑓𝑖 = 𝜅𝑓𝜔
2
𝑖 , (2.8)

where 𝜔𝑖 is the rotation speed of the 𝑖-th rotor.

2.2 Motion Planning

Throughout the next section, common approaches for motion planning will be pre-
sented. Since there is no clear guideline for planning problems terminology, the follow-
ing classification will be used. Geometric motion planning usually describes planning
considering the workspace limitations and task constraints such as initial and final
configuration. Kinodynamic motion planning or trajectory planning, on the other
hand, also considers differential and other constraints of the system. Optimal con-
trol extends the planning problem to search for optimal system inputs that consider
certain constraints and lead to a feasible trajectory. In the course of this work, no
distinction is made between trajectory planning and optimal control problems, and
both terms refer to planning problems, including inputs. Usually, planning algo-
rithms aim not only to find a feasible solution but also to find an optimal solution
with respect to a certain objective. Optimal trajectory planning in general aims for
solving an optimal control problem by searching for an optimal control input trajec-
tory 𝑢*(𝑡) : R → R𝑛𝑢 , corresponding optimal state trajectory 𝑥*(𝑡) : R → R𝑛𝑥 and
optimal time-invariant parameters 𝑝* ∈ R𝑛𝑝 (e.g. final time for free-final-time prob-
lems). Where the goal is to optimize an objective with respect to a set of constraints
[12] on a defined time interval 𝑡 ∈ [0, 𝑇 ]. The general optimization problem can then
be formulated as follows:

6



min
𝑥(𝑡),𝑢(𝑡),𝑝

𝐽(𝑥(𝑡), 𝑢(𝑡), 𝑝) (2.9)

subject to �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝), ∀𝑡 ∈ [0, 𝑇 ] (2.10)
ℎ𝑖𝑐(𝑥(0), 𝑝) = 0, ℎ𝑡𝑐(𝑥(𝑇 ), 𝑝) = 0 (2.11)
𝑔𝑝(𝑥(𝑡), 𝑢(𝑡), 𝑝) ≤ 0, ∀𝑡 ∈ [0, 𝑇 ]. (2.12)

Here 𝑥(𝑡) : R → R𝑛𝑥 , 𝑢(𝑡) : R → R𝑛𝑢 , 𝑝 ∈ R𝑛𝑝 describe the state trajectory, input
trajectory and the time-invariant parameters. The general optimal control problem
contains the objective function 𝐽 : R𝑛𝑥 ×R𝑛𝑢 ×R𝑛𝑝 → R (2.9) which should be mini-
mized and the constraints. Usually, constraints are divided into dynamic constraints
𝑓 : R𝑛𝑥×R𝑛𝑢×R𝑛𝑝 → R (2.10), initial constraints ℎ𝑖𝑐 : R𝑛𝑥×R𝑛𝑝 → R𝑛𝑖𝑐 and final con-
straints ℎ𝑡𝑐 : R𝑛𝑥×R𝑛𝑝 → R𝑛𝑡𝑐 (2.11) and path constraints 𝑔𝑝 : R𝑛𝑥×R𝑛𝑢×R𝑛𝑝 → R𝑛𝑔

(2.12). While the dynamic constraints ensure that the resulting trajectory respects
the differential equations representing the dynamic model, the initial and final con-
straints represent requirements such as fixed initial and final configurations. Path
constraints, on the other hand, enforce collision avoidance or restrict states and in-
puts to a certain set.

These problems are known to be at least PSPACE hard to solve, high dimensional,
and often non-convex [13]. The most common approaches to solving trajectory gen-
eration problems rely on either building graphs or search trees or directly following
the gradients of the optimization problem. These approaches lead to three classes
of algorithms: optimization-based, search-based and sampling-based. These will be
discussed in detail in the following.

An essential property of a motion planner is completeness. Therefore completeness
and its weaker forms will be defined briefly. A planner is considered complete if
it returns a solution, if one exists, in a finite amount of time and returns a failure
otherwise. For resolution completeness, a planner has to be able to find a solution to
the spatially discretized version of the problem and otherwise return that no solution
exists. The discretization of the problem introduces a resolution up to which problems
can be solved. Probabilistic completeness is given if the probability of a planner finding
an existing solution converges to one.

2.2.1 Optimization-Based Trajectory Generation

Optimization-based trajectory planning algorithms aim to find a state-control se-
quence that minimizes a certain cost function locally. Since they have significant
computational speed advantages, they are increasingly used as stand-alone algo-
rithms even though they are prone to local minima. Especially in aerospace [14,
15] and robotics applications [16, 17, 18], purely optimization-based algorithms are
widely used for trajectory planning. Optimization-based algorithms aim to solve
the continuous-time optimal control problem (2.9) - (2.12). In general, existing ap-
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proaches can be divided into direct and indirect methods. While indirect approaches
first analytically derive the necessary optimality conditions and then discretize these
to find a root that solves the problem, direct methods first discretize and then solve
the nonlinear problem (NLP) [19] by minimizing the objective function. Although
this work will be focused on direct methods for solving NLPs, indirect methods will
also be briefly discussed.

Indirect Methods

Indirect methods derive a boundary value problem (BVP) using the necessary op-
timality conditions of the continuous-time problem derived from Pontryagin’s maxi-
mum principle. The resulting system of ordinary differential equations is, in general,
solved numerically [20]. However, since differential equations are often highly nonlin-
ear and unstable, they are often difficult to solve in practice [21].

Direct Methods

Direct methods, on the contrary, formulate a tractable optimization problem that
can be solved directly [21]. Since the original problem formulation (2.9) - (2.12) is
an infinite dimensional optimization problem and therefore intractable, the continu-
ous dynamics, controls and cost function have to be discretized to apply numerical
optimization methods. Resulting in the following discrete optimization problem:

min
𝑥,𝑢,𝑝

𝐽(𝑥, 𝑢, 𝑝) (2.13)

subject to 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝑝), ∀𝑘 ∈ {0, ..., 𝑁} (2.14)
ℎ𝑖𝑐(𝑥𝑘=0) = 0, ℎ𝑡𝑐(𝑥𝑘=𝑁) = 0 (2.15)
𝑔𝑝(𝑥𝑘, 𝑢𝑘, 𝑝) ≤ 0, ∀𝑘 ∈ {0, ..., 𝑁}. (2.16)

Here, the state and input constraints are often non-convex, and the system dynamics
are often nonlinear. In general, this problem formulation leads to high-dimensional
and non-convex problems, which result in high computational complexity and loss
of guarantees for obtaining a solution [22]. For this, various methods for solving
the discretized nonlinear optimization problem have been developed using different
problem formulations.

For example, methods such as CHOMP [17] and STOMP [23] have proven their ma-
turity for solving a wide variety of motion planning problems. For CHOMP, the
cost function consists of two parts: the first part measures dynamic quantities of the
trajectory, while the second part deals with obstacle constraints by applying poten-
tial functions based on distance fields. The update of the discrete configurations is
then calculated via covariant gradient descent, making the update invariant to the
trajectory parameterization. Therefore, the gradients of the resulting cost function
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must be available and smooth. While the original implementation could not han-
dle additional constraints, the extension described in [16] was able to incorporate a
wider variety of constraints into the planning process. To overcome weak local min-
ima, [17] incorporates gradient information into Monte Carlo sampling to make the
planner probabilistically complete ([16]). For updating the configurations along the
trajectory, STOMP [23] uses a similar approach but extends the method to arbitrary
cost functions by not relying on analytical gradients. Instead, [23] uses a stochastic
estimation of the gradient and performs stochastic gradient descent. This results
in STOMP being able to escape local minima more efficiently due to the stochas-
tic nature of its update rule. Since both methods only treat the configurations as
optimization variables, the inputs have to be calculated using the system’s inverse
kinematics.

KOMO [18] and SCP [12], have shown their significant potential in the last years.
SCP methods, are more general NLP solvers and used in a variety of different optimal
control problems [14, 24], but do not make use of the special structure and proper-
ties of these problems, whereas KOMO can exploit these efficiently. Toussaint [18],
like Kalakrishnan et al. [23] and Ratliff et al. [17], represents the trajectory only in
configuration space and deals with dynamics by imposing constraints on consecutive
configurations. The resulting optimization problem is then solved by classical opti-
mization algorithms such as Gauss-Newton, augmented Lagrangian and log-barrier.
KOMO exploits the resulting structure of the Jacobian of the cost function to effi-
ciently compute the pseudo-Hessian and store it in a matrix representation beneficial
for further calculations [18]. SCP implementations like SCvx and GuSTO [12], on the
other hand, are more general and can also treat velocities and accelerations as decision
variables. Therefore, they are well suited for arbitrary constraints and cost functions.
Since SCP and KOMO are used extensively in this thesis, they are explained in detail
in section 3.2 to 3.4.

Differential dynamic programming (DDP) [25] and iterative LQR (iLQR) [26] are
also widely used in robotic optimal control [27, 28, 29]. Although these methods are
fast and have small memory requirements, they are less well suited for considering
nonlinear state and input constraints [29].

Application for Multirotors

Although the aforementioned algorithms are widely used in Robotics, only SCP [12,
30], DDP [27] and iLQR [31, 32] are actually used for multirotor trajectory generation
and only DDP methods and implementations using generic NLP-solvers (e.g. ACADO
[33]) consider the full dynamics of the system and non-convex constraints.

2.2.2 Trajectory Generation for Flat Systems

A common method for generating trajectories for multirotors is to leverage the sys-
tem dynamics instead of simply imposing them as constraints, making use of the
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differential flatness property of the full dynamics of the multirotor [34, 35, 36]. These
approaches are discussed in detail as a special case of optimization-based trajectory
generation, which is important for multirotors. In system theory, a dynamic system
is called differentially flat if a set of outputs exists such that all states and inputs
of the system can be fully described by smooth functions of these outputs and their
time derivatives [37]. Here, the flat output’s dimensionality must match the original
input’s dimensionality. The trajectory in the flat output is defined by:

𝜓(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡), �̇�(𝑡), ..., 𝑢(𝑝)(𝑡)) ∈ R𝑛𝑢 (2.17)

and is called flat if the smooth functions 𝑔𝑥 and 𝑔𝑢 exist such that:

𝑥(𝑡) = 𝑔𝑥(𝜓(𝑡), �̇�(𝑡), ..., 𝜓
(𝑝)(𝑡)) ∈ R𝑛𝑥 (2.18)

𝑢(𝑡) = 𝑔𝑢(𝜓(𝑡), �̇�(𝑡), ..., 𝜓
(𝑝)(𝑡)) ∈ R𝑛𝑢 . (2.19)

Taking advantage of this property, a reference trajectory can be planned in out-
put space while the actual states and inputs are obtained by mapping the flat out-
put through 𝑔𝑥 and 𝑔𝑢. For multirotors, the planning of the reference trajectory
can be done for every component independently. Where the flat output becomes
𝜓(𝑡) = [𝑥, 𝑦, 𝑧, 𝜑]𝑇 ∈ R4, with 𝑥, 𝑦, 𝑧 being the positional components and 𝜑 being
the yaw angle. Generating the reference trajectory in output space can be simpli-
fied by using parametric splines. For example, using piecewise polynomials [36, 38]
or defining spline curves as the linear combination of smooth basis functions, e.g.
B-spline basis functions [39] or Bernstein polynomials [40]. These segments are pa-
rameterized by a vector of control points P = [𝑝0, 𝑝1, ..., 𝑝𝑛] ∈ R𝑛𝑢×(𝑛+1). Here the
number of control points is determined by the desired degree 𝑛 of the resulting spline.
For a spline segment using smooth basis functions 𝑏𝑖,𝑛 : R → R, this can be written
as follows:

𝜓(𝑡) =
𝑛∑︁

𝑖=0

𝑝𝑖𝑏𝑖,𝑛(𝑡) = P𝐵𝑛(𝑡), 𝑡 ∈ [0, 1]. (2.20)

With 𝐵𝑛(𝑡) ∈ R𝑛 being the vector concatenating all basis functions up to degree 𝑛.
When using Bezier curves as basis functions, the resulting spline has the following
useful properties [41]:

1. Convex Hull Property : 𝜓(𝑡) lies completely in the convex hull of the control
points 𝑝0, ..., 𝑝𝑛 (control polygon). This is illustrated by figure 2-3.
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Figure 2-3: Convex hull of the control points 𝑝0, ..., 𝑝𝑛.

2. 𝐶𝑛 Smoothness : all derivatives of 𝜓(𝑡) up to degree 𝑛 are smooth if 𝜓(𝑡) is
composed of basis functions of degree 𝑛.

3. End Point Interpolation: the curve at the first time point and last time point
coincides with the first and the last control points

𝜓(0) = 𝑝0 , 𝜓(1) = 𝑝𝑛. (2.21)

To construct the trajectory planning problem, a vector of 𝑁 + 1 waypoints 𝑊 =
[𝑤0, ..., 𝑤𝑁 ] and timestamps 𝑇 = [𝑡0, ..., 𝑡𝑁 ] is defined through which the trajectory
must pass (e.g. initial state and final state). These waypoints are connected by 𝑁
different splines parameterized by 𝑁 different vectors of control points and knots. The
degree 𝑛 of the basis functions must be chosen such that the highest order derivative
appearing in 𝑔𝑥 and 𝑔𝑢 is still smooth (property 2). The trajectory connecting all
waypoints is thus composed of the following:

𝜓1(𝑡) = P1𝐵1,𝑛(𝑡− 𝑡0), 𝑡0 ≤ 𝑡 ≤ 𝑡1
𝜓2(𝑡) = P2𝐵2,𝑛(𝑡− 𝑡1), 𝑡1 ≤ 𝑡 ≤ 𝑡2
...
𝜓𝑁(𝑡) = PN𝐵𝑁,𝑛(𝑡− 𝑡𝑁−1), 𝑡𝑁−1 ≤ 𝑡 ≤ 𝑡𝑁 .

(2.22)

The original planning problem (2.9) - (2.12) then translates to:

min
𝑃1,...,𝑃𝑁

𝐽(𝜓(𝑡)(𝑑), 𝑇 ) (2.23)

subject to 𝜓𝑖(𝑡𝑖) = 𝜓𝑖+1(𝑡𝑖) = 𝑤𝑖−1, 𝑖 = 1, ..., 𝑁 − 1 (2.24)
𝜓𝑁(𝑡𝑁) = 𝑤𝑁 (2.25)
𝜓1(𝑡0) = 𝑤0 (2.26)

𝜓
(𝑝)
𝑖 (𝑡𝑖) = 𝜓

(𝑝)
𝑖+1(𝑡𝑖), 𝑖 = 1, ..., 𝑁 − 1, 𝑝 = 0, ..., 𝑛. (2.27)

There (2.24) to (2.26) ensure that the defined way points are passed and (2.27) guar-
antees that the combined trajectory is 𝐶𝑛 continuous.
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The cost function 𝐽 normally penalizes the square of the derivatives of 𝜓(𝑡), e.g.,
minimizing the snap of the trajectory in the flat output [36], which derivatives to
incorporate into the cost function is determined by the mappings 𝑔𝑥 and 𝑔𝑢 and
the desired states or inputs that should be penalized. This leads to a quadratic
optimization problem with a global optimum that can be solved in polynomial time
[38]. However, this scales poorly with increasing numbers of spline segments and
control points. For polynomial splines, a possible solution is proposed by Richter
et al. [38]. The problem is reformulated as an unconstrained quadratic optimization
problem, optimizing over the endpoint derivatives instead of polynomial coefficients.

Time Optimization

Since the execution time is crucial for trajectory generation, following Richter et al.
[38], a possible method for minimizing flight time for polynomial splines is to adapt
the problem formulation by introducing the segment times as optimization variables
and adding the weighted sum to the cost function as follows:

𝐽(𝜓(𝑡)(𝑑), 𝑇 ) = 𝐽(𝜓(𝑡)(𝑑), 𝑇 ) + 𝑘𝑇

𝑁∑︁
𝑖=1

𝑡𝑖. (2.28)

Here, the weight 𝑘𝑇 influences the trade-off between minimizing the trajectory snap
and the execution time. Note that this is still a quadratic optimization problem.

Collision Avoidance

Additionally, it is often required to calculate collision-free trajectories. Since, for
multirotors, the position is part of the flat output, a constraint limiting the trajectory
to free space can be enforced by making use of the convex hull property of splines
composed of Bezier basis functions and B-splines. Therefore, a set of convex obstacles
𝒪 = {𝑂1, ..., 𝑂𝑛𝑜} is defined and the trajectory is considered collision-free if for each
Obstacle 𝑂𝑙 ∈ 𝒪 and any time point 𝑡 ∈ [𝑡0, 𝑡𝑁 ] the condition 𝑟(𝑡) /∈ 𝑂𝑙 holds.
Here 𝑟(𝑡) ∈ R3 is the part of the trajectory 𝜓(𝑡) that represents only the position
in Cartesian coordinates. Using the separating hyperplane theorem, the constraint
can be formulated as follows: there has to exist a separating hyperplane between the
control polygons of all sub-splines and any convex obstacle. This was, e.g., used by
Stoical et al. [39] for B-splines. Compared to other formulations, it is therefore not
necessary to make sure that the trajectory is also collision free between discretized
time steps. For polynomial splines, Richter et al. [38] proposes a method where
additional waypoints are added to make colliding sub-splines feasible.
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Input Constraints

Since the inputs are not freely selectable in reality but are restricted by constraints,
the trajectory in the output space must be mapped onto a feasible set of inputs. Since
the mapping from the trajectory in output space to input is generally nonlinear, this
would lead to non-convex constraints, losing the advantage of a quadratic optimization
problem. Therefore, Richter et al. [38] propose to first optimize the ratio of segment
times independently. Since the optimal ratio between the sub-intervals is invariant to
the total time, the segment times can be scaled in a separate optimization problem
until the input constraints are satisfied, where increasing the total time 𝑇 used causes
the inputs to converge to the hover state of the multirotor. However, this leads to
conservative trajectories because the input constraints do not influence the positions
of the control points.

Application for Multirotors

Differential flatness-based approaches are commonly used for multirotor trajectory
generation, for example, in [42, 36, 34]. Here the use of the flatness property can lead
to conservative motions since the input constraints are not handled explicitly in the
optimization.

2.2.3 Search-Based Trajectory Generation

Especially for trajectory planning in cluttered environments, search-based approaches
are used to find feasible trajectories [43],[44] since they provide strong theoretical
properties such as resolution completeness [43]. To generate a searchable graph,
the configuration space is discretized by a state lattice discretization that already
incorporates the system dynamics. The relative positions of the discrete states 𝑠
with respect to each other are defined by motion primitives. Motion primitives, in
general, define sequences of states and actions for a defined time period that are
consistent with the system’s dynamics and have an associated cost. These motion
primitives describe the transition from one state to a set of possible successor states.
The motion primitives 𝑒 are constructed in two ways. Either by applying a constant
input 𝑢𝑚 to the system for a short period of time 𝜏 , where the input is chosen from
the discretization 𝒰𝑀 = {𝑢1, ..., 𝑢𝑀} of the control set 𝒰 [43], or by using an inverse
planner to connect two neighboring nodes of the state lattice [45]. To search an already
piecewise optimal graph, the computation of the motion primitive must itself be an
optimization problem that guarantees that the trajectory between two successive
states is optimal with respect to the chosen cost function. For motion primitives
calculated by applying a constant input this can be done as follows. For multirotors,
the optimization problem can be simplified by taking advantage of the differential
flatness property of the system and planning with independent polynomials (𝑝(𝑡) ∈
R3) [43] as state trajectories in output space. For the system in output space, the
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control input can then be chosen as any derivative of the polynomial trajectory (e.g.,
the jerk ...

𝑝 (𝑡)) with respect to which the trajectory should be optimal. Since the
system’s dynamics become linear in output space, they can be written in state space
form, which can be used to calculate the optimal successor state given an applied
input and a cost function that penalizes the input. The linear dynamics in state
space form are given by:

𝜓(𝑡) = [𝑝(𝑡)𝑇 , �̇�(𝑡)𝑇 , ..., 𝑝(𝑛−1)(𝑡)𝑇 ]𝑇 ∈ R3𝑛 (2.29)
𝑢(𝑡) = 𝑝𝑛(𝑡) (2.30)

�̇�(𝑡) = A𝜓(𝑡) +B𝑢(𝑡). (2.31)

Where A ∈ R3(𝑛+1)×3(𝑛+1) denotes the state matrix and B ∈ R3(𝑛+1)×3 the input
matrix. The optimal trajectory connecting a state and its successor state in the flat
output space can then be obtained using the standard solution for a linear, time-
invariant system:

𝜓(𝑡) = 𝑒A𝑡⏟ ⏞ 
F(𝑡)

𝑦0 +

[︂∫︁ 𝑡

0

𝑒A(𝑡−𝜎)B𝑑𝜎

]︂
⏟  ⏞  

G(𝑡)

𝑢𝑚. (2.32)

That the obtained solution is optimal with respect to the chosen cost function is
shown by Liu et al. [43]. Moreover, since the duration of the motion primitive is
constant, the cost of each primitive can be calculated in advance. An example of how
the transition from a state with a non-zero velocity to its successor states may look
is shown in figure 2-4, where the red squares denote the system states, the pink lines
denote the motion primitives and the black arrows denote the applied elements of the
discretized control set 𝒰𝑀 .

Searchable Graph

To build a searchable graph, the output state space is mostly discretized in two ways
[45]. Firstly, a grid discretization can be chosen directly. Secondly, discretizing the
control set leads to an implicit state space discretization.

To build the searchable graph directly on a discretized grid, an inverse planner has to
be invoked to plan the trajectories connecting an initial state with its neighbors. If the
discretization is regular, the obtained motions can be applied to any node to connect
it with its neighbors [45]. To store all states of a possibly infinite lattice imposes
significant memory requirements [45]. Therefore Pivtoraiko and Kelly proposes using
a minimal set of feasible motions, from which all possible paths can be obtained
by concatenation. This set is obtained by calculating the motions to each node in
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Figure 2-4: Transition of an initial state with nonzero velocity to possible successor
states defined by motion primitives (source: figure 3 (a) in [43]).

a limited radius around the initial state while excluding connections that can be
composed of already obtained motions. During the search, only the minimal subset
of motions is considered.

To build a searchable graph using the discrete control set, the state space is explored
by starting with the initial state and calculating the motion primitives that lead to
the successor states. For each successor state, this procedure is repeated until a node
of the state lattice lies within the goal region 𝒳𝑔𝑜𝑎𝑙. Changing the terminal constraint
from an exact goal state to a goal region in state space is necessary since the state
lattice has a finite resolution determined by the duration 𝜏 of the motion primitives.
Therefore, the duration must be chosen such that the resolution of the state lattice
is smaller than the actual goal region [44].

The obtained states and motion primitives have to be checked for collisions and state
constraints feasibility. Enforcing state constraints can be done by computing the
maximum and minimum of the associated derivatives over the trajectory connecting
two consecutive states [43]. Enforcing obstacle constraints is more difficult as it the-
oretically requires a collision check between the swept volume of the multirotor along
the trajectory and each obstacle, i.e., ensuring that 𝑥𝑘(𝑡) ∈ 𝒳𝑓𝑟𝑒𝑒. Here 𝒳𝑓𝑟𝑒𝑒 denotes
the collision-free subset of the state space. This can be simplified by approximating
the shape of the multirotor as an ellipsoid and representing the obstacles as point
clouds. Intermediate positions are then sampled along the motion primitive, at which
it is checked whether any points lie within the ellipsoid [44]. A different approach is
to check traveled and occupied grid cells [43].

Since all nodes lie in feasible regions of the subspace and all graph edges consist of
optimal trajectories, the original planning problem (2.9) - (2.12) translates to [43]:
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min
𝑁,𝑢0:𝑁−1

(
𝑁−1∑︁
𝑘=0

||𝑢𝑘||2 + 𝜌𝑁)𝜏 (2.33)

subject to 𝜓𝑘(𝑡) = F(𝑡)𝑠𝑘 +G(𝑡)𝑢𝑘, 𝑡 ∈ [0, 𝜏 ] (2.34)
𝜓𝑘(𝑡) ⊂ 𝜓𝑓𝑟𝑒𝑒, ∀𝑘 ∈ {0, ..., 𝑁 − 1}, 𝑡 ∈ [0, 𝜏 ] (2.35)
𝑠𝑘+1 = 𝑥𝑘(𝜏), ∀𝑘 ∈ {0, ..., 𝑁 − 1} (2.36)
𝑠0 = 𝜓0, 𝑠𝑁 ∈ 𝜓𝑔𝑜𝑎𝑙 (2.37)
𝑢𝑘 ∈ 𝒰𝑀 , ∀𝑘 ∈ {0, ..., 𝑁 − 1}. (2.38)

Where 𝑁𝜏 additionally penalizes the overall flight time and 𝜌 determines the weight-
ing between input cost and time cost. Note that the flatness property is assumed
and 𝜓𝑘(𝑡) is in flat output space. The stated problem can be solved by graph search.
Where the searchable graph 𝒢(𝒮, ℰ) is composed of the set of reachable states 𝒮 and
the set of motion primitives ℰ connecting these states.

Heuristic Function

Graph search problems can be solved efficiently with informed search algorithms like
A*. To efficiently guide the graph search, an approximation of the real cost-to-go
function has to be found that assigns an approximation of the cost-to-go to each
node. Liu et al. [43] propose two candidates that meet the requirements. An intuitive
solution for a heuristic that only considers time as cost-to-go is to calculate the
minimum possible traveling time for the distance from the state to the goal region.
Since this heuristic discards the control effort, which is part of the original objective,
Liu et al. provide a more sophisticated heuristic derived from a relaxed version of
problem 2.8. Here, the input and obstacle constraints are removed and the problem
becomes a quadratic optimization problem with an analytical solution and a closer
approximation of the real cost.

Trajectory Refinement

Guaranteeing the smoothness of the trajectory in higher dimensions introduces higher
dimensional states (position, velocity, acceleration, jerk, ...) and, thus, a longer plan-
ning time. This can be avoided by planning in lower dimensions and refining the
trajectory around the solution found. Liu et al. propose to either solve an uncon-
strained quadratic problem [43], keeping the previously found waypoints and time
steps the same, or resolve the graph search problem in higher dimensions and in-
corporating the previously found solution into a new heuristic function [44]. The
final trajectory obtained by the first method is not guaranteed to be collision-free
and feasible any longer. For the second method, the new heuristic is not admissible
anymore since it is not necessarily an underestimate of the cost-to-go and, therefore,
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the resulting trajectory will not be optimal.

Application for Multirotors

Search-based motion planning methods for multirotors are, e.g., applied in [43] and
[44]. However, the need to reduce the dimensionality of the state lattice requires the
use of approximations using the differential flatness property leading to the mentioned
limitations.

2.2.4 Sampling-Based Trajectory Generation

Sampling-based motion planning algorithms are considered practical solutions to a
variety of motion planning problems due to their theoretical properties regarding
probabilistic completeness [46] and the fact that they scale well (still exponentially)
with high dimensions in configuration space (C-space) [47].

These algorithms explore the free C-space of a dynamic system by generating and
connecting samples to find a feasible path between an initial and a goal configu-
ration. Sampling-based methods can be divided into multi-query and single-query
planners. Multi-query planners aim to represent the connectivity of the free C-space
as a searchable graph that can be used to solve multiple motion planning problems
efficiently. These approaches are useful when numerous tasks need to be performed
in the same environment without changing the position and shape of the obstacles. A
single-query planner, on the other hand, connects only an initial and a goal configura-
tion [48]. The most common algorithms are based on the different variants of rapidly
exploring random trees (RRT) and probabilistic roadmaps (PRM). Since RRTs and
PRMs are widely used, their basic operating principle is described in detail in the
following sections.

Probabilistic Roadmap Planner

Probabilistic roadmap methods [49] are multi-query planners that operate in two
phases: exploration and exploitation phase. In the exploration phase, a probabilistic
roadmap is built by sampling configurations and connecting them into a searchable
graph. The algorithm starts with an empty graph 𝒢(𝒮, ℰ) and then draws samples
𝑐, checking each sample for feasibility regarding collisions. Each feasible sample is
added to the nodes 𝒮, and a fast local planner is used to connect them to their
nearest neighbors. If the planner finds a feasible path that connects the sample to
one of the nodes 𝑠 of the roadmap, the edge (𝑐, 𝑠) is added to ℰ . Since connecting a
sampled configuration to the existing graph is computationally costly, it is important
to choose wisely when to connect a sample. For example, samples in a connected part
of the free C-space are not as useful for representing the connectivity as samples in
narrow passages in between connected parts [50]. Generating "useful" samples can be
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done by exploiting the knowledge about the configuration space obtained during the
sampling procedure [50, 51, 52]. During the exploitation phase, the generated graph
is used to find feasible paths between two configurations by connecting them to the
graph and searching for the shortest path from the initial to the goal configuration.
Regarding completeness, this algorithm is considered probabilistic complete [46].

Rapidly Exploring Random Trees

Methods that use rapidly exploring random trees [47] are considered single query
planners. Unlike PRM methods, RRT methods do not aim to generate a represen-
tation that can be exploited but connect an initial configuration directly to a goal
configuration/region. The RRT algorithm starts with the initial configuration and
samples in each iteration a new configuration. The tree’s growth is guided by the
so-called Voronoi bias and favors extending in unexplored regions [47], leading to an
equal exploration of the C-space. In the next step, the algorithm aims to connect the
obtained sample to the existing tree by extending the nearest node in the direction
of the sample. Once the tree has reached the goal region, the algorithm terminates
and returns the resulting tree. This algorithm is considered probabilistic complete
[46]. A notable extension that significantly increases the performance of the original
version is using two separate rapidly exploring random trees, one growing from the
initial and one from the goal configuration [53]. This can be useful to escape so-called
bug trap scenarios significantly faster.

Kinodynamic Planning

Up to this point, discussed RRT and PRM versions only find paths without consid-
ering the system’s dynamics. Since non-holonomic systems cannot follow arbitrary
paths, kinodynamic methods have been derived that are able to incorporate the sys-
tem dynamics [47]. For RRT’s, LaValle already addressed this problem in his original
RRT implementation by extending a node of a tree in a dynamically feasible fashion.
Connecting a node to a sample or extending it to a particular point in C-space while
respecting differential constraints leads to a BVP that is difficult or impossible to
solve [48]. Therefore, the new node can be obtained by propagating the dynamics
�̇� = 𝑓(𝑥, 𝑢) for a randomly sampled time ∆𝑡 for different inputs 𝑢 and choosing the
configuration that gets closest to the actual sample. This leads to a tree where dy-
namically feasible edges connect all nodes. PRM’s result in a graph representation of
the free space where each node has multiple connections. Since propagating the node
could only be done for one connection, kinodynamic PRM-methods require solving
multiple BVPs to obtain feasible connections.
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Optimal Planning

Up to this point, all the described sampling-based methods either have no guarantees
regarding optimality or lead to suboptimal solutions. For RRT, it has even been
proven that the algorithm converges to a suboptimal solution with probability 1 [46].
A common method for optimizing a path tries to connect two non-consecutive nodes
along the path with a feasible link, shortcutting the path at this point [49]. Since
this does not guarantee optimality, Karaman and Frazzoli propose variants of PRMs
and RRTs (PRM*, RRT*) that are shown to be asymptotically optimal and compu-
tationally efficient. Since certain PRM versions are already asymptotically optimal
[46], PRM* becomes computationally efficient by limiting the number of connections
from each new node according to the total number of nodes in the graph. RRT*
extends the original version by connecting a new node not to its nearest neighbor,
but to the neighbor that minimizes a given cost function. Afterward, the graph is
rewired so that the added node is chosen as the parent for all neighboring nodes,
resulting in a lower-cost path.

Application for Multirotors

For the trajectory planning of multirotors, kinodynamic RRT* implementations are
often used [54, 55]. These methods either use the linearized dynamics of the multirotor
model or make use of the differential flatness property. This is necessary to ensure
computational efficiency, as RRT* versions are used that connect the tree to a newly
obtained sample instead of just propagating a node in the direction of the sample.
This may lead to suboptimal solutions for highly aggressive maneuvers as the real
dynamic could deviate strongly from the linearization.

2.2.5 Discussion

Throughout the following section, the methods introduced up to this point will be
discussed to motivate the choice of optimization-based methods for motion planning.
The properties regarding completeness, optimality and run time of the discussed algo-
rithms are presented in table 2.1. Sampling- and search-based methods are especially
well suited for problems with a low dimensional state space and scenarios where gra-
dient information alone will seldom guide to feasible solutions. Such scenarios can be,
e.g., "bug-trap" type of problems, where random exploration for finding a solution
or the complete exhaustion of all possible solutions is necessary. Since multirotor
applications seldom have these properties and, in most cases, do not require the
globally optimal solution, optimization-based methods are applicable. Furthermore,
optimization-based methods show several significant benefits, such as speed advan-
tages for high dimensional state spaces, and their optimality is not just asymptotically
or tied to a state lattice resolution. Therefore optimization-based methods were used
throughout this work.
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Completeness Optimality Computation
Time

Sampling Probabilistically
Complete

Asymptotically
Optimal

does not scale well with
state space dimensions

(exponential)

Search Resolution
Complete

Globally Optimal
in Resolution

does not scale well with
state space dimensions

(exponential)

Optimization Incomplete locally Optimal
scales well with

state space dimensions
(polynomial)

Table 2.1: Comparison of motion planning approaches.
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Chapter 3

Approach

In this chapter, the used approaches are described and their implementations are
presented.

3.1 Formulation of the Multirotor Motion Planning
Problem

The following section describes the concrete problem formulation for multirotor mo-
tion planning. For the dynamic model, two different levels of approximation were
used. The first being the full nonlinear dynamics (3.2) already introduced in section
2.1.2 with state 𝑥𝑛𝑙 and control input 𝑢𝑛𝑙. The second is a double integrator model
(3.3), representing the multirotor as a single point with state 𝑥𝑙 including position
and velocity and with control input 𝑢𝑙 being the acceleration of the multirotor. These
approaches lead to the following states and inputs:

𝑥𝑛𝑙 =

⎛⎜⎜⎝
𝑝
𝑣
𝑞
𝜔

⎞⎟⎟⎠ ∈ R13, 𝑢𝑛𝑙 =

⎛⎜⎝ 𝑓0
...
𝑓𝑛𝑚

⎞⎟⎠ ∈ R𝑛𝑚 , 𝑥𝑙 =

(︂
𝑝
𝑣

)︂
∈ R6, 𝑢𝑙 = 𝑎 ∈ R3 (3.1)

and the dynamic equations:

�̇�𝑛𝑙 =

⎛⎜⎜⎜⎜⎝
𝑣

1
𝑚
R(𝑞)𝑓𝑇 + 𝑔

1
2
𝑞 ⊗

(︂
0
𝜔𝐵

)︂
𝐽−1(𝜏 − 𝜔𝐵 × 𝐽𝜔𝐵)

⎞⎟⎟⎟⎟⎠ (3.2) �̇�𝑙 =

(︂
𝑣
𝑎

)︂
(3.3)
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�̇�𝑛𝑙 = 𝑓𝑛𝑙(𝑥, 𝑢) (3.4) �̇�𝑙 = 𝑓𝑙(𝑥, 𝑢). (3.5)

Using the double integrator model is a common approximation of the dynamics for
multirotor trajectory generation (e.g., [12]) and can be used to generate more ac-
curate reference trajectories than produced by naive approaches like straight line
interpolation.

The motion planning problem considered in this work places the following require-
ments on the obtained solution:

1. the multirotor trajectory starts in an initial state 𝑥0 and ends in a final state
𝑥𝑇 ,

2. the whole trajectory 𝑥(𝑡) is collision-free, meaning that the multirotor approx-
imated by the sphere 𝑆(𝑡) does not intersect with the obstacles 𝑂𝑖 ∈ 𝒪,
𝑖 ∈ {1, ..., 𝑛𝑜𝑏𝑠} at any time point,

3. the multirotor movement corresponds to the dynamic equations (3.2) and (3.3),

4. the maximum and minimum position (𝑝𝑚𝑎𝑥) / velocity (𝑣𝑚𝑎𝑥) / orientation
(𝑞𝑚𝑎𝑥) / rotational velocity (𝜔𝐵,𝑚𝑎𝑥) / input (𝑓𝑖,𝑚𝑎𝑥 or 𝑎𝑚𝑎𝑥) is not exceeded,

5. the trajectory minimizes control effort i.e. minimizes 𝐽(𝑢) =
∫︀ 𝑇

0
‖𝑢(𝑡)‖2𝑑𝑡,

leading to the following problem formulation for the two models:

min
𝑥(𝑡),𝑢(𝑡)

𝐽(𝑢(𝑡)) (3.6)

subject to �̇�(𝑡) = 𝑓𝑛𝑙/𝑙(𝑥(𝑡), 𝑢(𝑡)) (3.7)
𝑆(𝑡) ∩𝑂𝑖 = ∅,∀𝑖 ∈ {1, ..., 𝑛𝑜𝑏𝑠} (3.8)
𝑥(0) = 𝑥0, 𝑥(𝑇 ) = 𝑥𝑇 (3.9)
𝑥(𝑡) ≤ 𝑥𝑚𝑎𝑥, 𝑥(𝑡) ≥ 𝑥𝑚𝑖𝑛 (3.10)
𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥, 𝑢(𝑡) ≥ 𝑢𝑚𝑖𝑛. (3.11)

(3.12)

3.2 Sequential Convex Programming (SCP)

Throughout this section, SCP-methods and their advantages, guarantees and limita-
tions will be described to motivate the use as a baseline to compare KOMO against.
Sequential convex programming methods approximate the original non-convex opti-
mization problem iteratively as a convex sub-problem updating the approximation
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according to newly obtained sub-problem solutions. Modern SCP methods are con-
sidered fast, flexible and efficient local optimization algorithms for trajectory gener-
ation. Probably the first SCP method sharing the structure of modern methods was
sequential linear programming SLP [12]. Which has grown in popularity, especially
for large-scale problems [56], due to well matured linear problem solvers such as the
Simplex-Algorithm. Over time constraining the convex sub-problems to SLPs has be-
come unnecessary since solvers for more general problems were sufficiently advanced.
Nevertheless, linear approximations are still accurate enough for various optimization
problems and are often used in practice. Since their gain in popularity in the 1970s,
sequential quadratic programming SQP algorithms are arguably the most mature
class of SCP algorithms and comparably well analyzed (e.g., [57]). Even though they
benefit from their close relation to Newton Methods and the fact that the initial guess
does not have to be feasible, they have clear downsides, such as the need to reliably
estimate the Hessian of the non-convex program and requiring affine constraints in
the solution variable (trajectory generation problems often contain non-affine con-
straints such as second-order cone constraints) [12]. These limitations are overcome
by methods using more general convex problems, such as sequential semi-definite pro-
gramming, which will be described in detail later. These methods are widely used
in a variety of engineering domains, among others in aerospace [24], mechanical de-
sign [58] and power grid technology [59]. An application worth mentioning is the
use of SCP-algorithms in the New Shephard rocket of NASA and BlueOrigin [12].
Following the extension by Malyuta et al. of the hierarchy of optimization algorithms
originally proposed by Boyd and Vandenberghe, SCP-algorithms can be placed at
the top of standard optimization algorithms in terms of complexity, since they use
complex algorithms such as interior point methods as an inner loop for solving convex
sub-problems.

As already mentioned, all SCP implementations revolve around iteratively solving
convex approximations of the non-convex problem around an updated initial guess.
Malyuta et al. describe the general procedure as shown in figure 3-1 and point out
different properties and advantages, which will be discussed briefly. To solve the non-
convex trajectory optimization problem, SCP is initialized with the problem formula-
tion 𝑃 defined by the objective function and the constraints and the initial guess 𝑥𝑖𝑛𝑖𝑡.
To create a convex sub-problem, the non-convex parts of the problem definition are
convexified (1.). Approximating the non-convex problem can lead to an unbounded
or infeasible sub-problem (a more detailed explanation follows in 3.2.1), which has
to be relaxed to guarantee its feasibility (2.). Then the continuous time problem is
discretized (3.) and subsequently solved (4.). If the obtained solution has converged
SCP stops and returns the optimal solution 𝑥𝑜𝑝𝑡. If the obtained solution has not con-
verged (5.), the algorithm updates the trust region according to an update rule. It
uses the found solution as an initial guess for the next iteration (6.). This is repeated
until the solution has converged. One major advantage of SCP-methods is that they
are agnostic to the choice of the convex solver in (4.). Therefore the solver can be
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Start

𝑃, 𝑥𝑖𝑛𝑖𝑡

1. Convexify Problem

2. Handle Infeasibility
and Unboundedness

3. Discretize Problem

4. Solve Subproblem

5. 𝑥𝑜𝑝𝑡

Converged?

End

6. Update
Trust Region

and 𝑥𝑖𝑛𝑖𝑡

yes

no

Figure 3-1: SCP procedure (based on [12], figure 11).

chosen from a variety of mature, application-ready packages such as Gurobi1, ECOS2

or MOSEK3. Another useful property of SCP-methods is that they have meaningful
theoretical guarantees regarding algorithmic complexity and performance, in contrast
to general NLP-optimization [12].

3.2.1 Artificial Unboundedness and Infeasibility

Convexifying constraints can render the originally feasible problem infeasible by mak-
ing it unbounded or lead to an empty set of feasible points regarding the convex con-
straints (figure 3-2 right-hand side). In figure 3-2 on the left-hand side, the possible

1https://www.gurobi.com/
2https://github.com/embotech/ecos
3https://www.mosek.com/

24



unboundedness of the convex approximation is visualized. The originally non-convex
objective is shown in blue, while the dashed orange line describes the convex approx-
imation. It becomes clear that in the non-convex case the optimal point 𝑥* lies in
the right valley of the objective, while in the convex case the objective function 𝐽(𝑥)
becomes unbounded below. Artificial unboundedness can be addressed by introduc-
ing a trust region limiting the area in which the approximation is assumed accurate.
However, limiting the region in which the optimizer finds feasible solutions can, in a
similar fashion as approximating the non-convex constraints, lead to artificial infea-
sibility. The figure in the middle of figure 3-2 shows how the convex approximation
can render an originally feasible problem infeasible. Here the equality constraints are
represented by the blue and green line, the inequality constraint is described by the
red shaded area and the convexified equality constraint is represented by the orange
dashed line. Linearizing the non-convex blue equality constraint leads to a shift of
the intersection of the equality constraints into the infeasible region of the inequality
constraint, rendering the problem infeasible. On the right-hand side, it is shown how
constraining the validity of the approximation to a trust region can make a problem
infeasible. Here the introduced trust region constraint (green) does not cover the
intersection of the equality constraints (blue and orange). The problem is therefore
artificially infeasible. To tackle infeasibility introduced by the convexification of the
problem, SCP methods relax the problem guaranteeing that the convex sub-problem
is feasible. How this is done in particular can change from implementation to imple-
mentation.

!*!*
"(!*)
"(!*)

"(!)

!

convex

non-convex
!"#"$ !1

!2 decreasing cost non-convex

convex
!1,$%$&

!2,$%$&

!1

!2 decreasing cost

!1,$%$&

!2,$%$&
trust region

Figure 3-2: Visualization of artificial unboundedness (left-hand side) and artificial
infeasibility (middle, right-hand side (based on [12] figure 13)).

3.2.2 Successive Convexification (SCvx)

This section will describe the SCP-algorithm implemented as a baseline for bench-
marking the KOMO-framework. Throughout this work sequential convexification
(SCvx) is used as variant of SCP. The algorithm was first introduced by Mao et al.
[61], rigorously analyzed regarding convergence behavior in [62] and compared to sim-
ilar SCP-methods in [12]. Since the authors only use first-order approximations of the
non-convex problem, the algorithm can be seen as part of the SLP-methods. Com-
pared to general nonlinear optimizers, SCvx has a series of solid theoretical guarantees
regarding its convergence behavior and does not assume the feasibility of the initial
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guess [62]. Compared to SQP-algorithms, which have, at best linear convergence be-
havior with perfect hessian approximation, SCvx is guaranteed to have a superlinear
convergence behavior and does not require computationally expensive techniques for
approximating the hessian and making sure that it is positive semi-definite [61] since
the hessian is not required.

This chapter’s notation and problem formulation mostly follow the work of Malyuta
et al. on the SCvx-algorithm. To simplify the notation later on, the path constraints in
the general trajectory planning problem (2.9)-(2.12) are split up into the convex sets
𝒳 ⊆ R𝑛𝑥 and 𝒰 ⊆ R𝑛𝑢 and in non-convex constraints represented by the continuously
differentiable function 𝑠 : R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑝 → R𝑛𝑠 . Deviating from the algorithm
proposed by Malyuta et al. the constraints ℎ𝑖𝑐(𝑥(0)) = 0, ℎ𝑡𝑐(𝑥(𝑇 )) = 0 are assumed
to already be convex, since a wide variety of trajectory generation problems can be
formulated completely relying on convex initial and final constraints. Without loss of
generality, the problem is formulated on the time interval [0, 1], since the final time
can be incorporated into the parameter vector 𝑝. The resulting optimization problem
has the following form:

min
𝑥(𝑡),𝑢(𝑡),𝑝

𝐽(𝑥(𝑡), 𝑢(𝑡), 𝑝) (3.13)

subject to �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝), ∀𝑡 ∈ [0, 1] (3.14)
ℎ𝑖𝑐(𝑥(0)) = 0, ℎ𝑡𝑐(𝑥(1)) = 0 (3.15)
𝑠(𝑥(𝑡), 𝑢(𝑡), 𝑝) ≤ 0, ∀𝑡 ∈ [0, 1] (3.16)
(𝑥(𝑡), 𝑝) ∈ 𝒳 (𝑡), (𝑢(𝑡), 𝑝) ∈ 𝒰(𝑡), ∀𝑡 ∈ [0, 1]. (3.17)

Here the objective function is assumed to be in Bolza form [63]:

𝐽(𝑥, 𝑢, 𝑝) = 𝜑(𝑥(𝑇 ), 𝑝) +

∫︁ 𝑇

0

Γ(𝑥(𝑡), 𝑢(𝑡), 𝑝)𝑑𝑡. (3.18)

With the terminal cost 𝜑 : R𝑛𝑥×R𝑛𝑝 → R and the running cost Γ : R𝑛𝑥×R𝑛𝑢×R𝑛𝑝 →
R. Note that the objective is already assumed to be convex since all non-convex terms
in the cost can be reformulated and offloaded into the constraints [12]. To handle the
challenges mentioned in section 3.2.1, the following algorithmic choices were made
following [12]:

Variable Scaling:

Optimization variables with different magnitudes can lead to numerical issues during
optimization (i.e., bad quality of the optimal solution or slow convergence). Therefore
Malyuta et al. propose a method that shifts and scales the decision variables 𝑥, 𝑢, 𝑝
such that all their elements take values in the same interval [0, 1]. This leads to the
following affine transformation with 𝑥′, 𝑢′, 𝑝′ being the new scaled variables:
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𝑥 = S′
𝑥𝑥+ 𝑐𝑥, (3.19)

𝑢 = S′
𝑢𝑢+ 𝑐𝑢, (3.20)

𝑝 = S′
𝑝𝑝+ 𝑐𝑝. (3.21)

Where 𝑆𝑥, 𝑆𝑢, 𝑆𝑝 and 𝑐𝑥, 𝑐𝑢, 𝑐𝑝 are matrices and vectors with appropriate content.

Constraint Convexification:

The originally non-convex problem is linearized to obtain a convex sub-problem.
While first-order approximations have several advantages, using first-order approxi-
mations is less accurate than higher-order approximations. In the SCvx-Algorithm,
the introduced linearization error is adequately managed by the trust region update
[62] that is described in detail later. To obtain the first Taylor series approximation,
the Jacobians of ℎ𝑖𝑐, ℎ𝑡𝑐, 𝑠 and 𝑓 must be calculated around the reference solution
(�̄�, �̄�, 𝑝). These are defined as follows [12]:

A(𝑡) ≜ ∇𝑥𝑓(�̄�(𝑡), �̄�(𝑡), 𝑝) (3.22)

B(𝑡) ≜ ∇𝑢𝑓(�̄�(𝑡), �̄�(𝑡), 𝑝) (3.23)

F(𝑡) ≜ ∇𝑝𝑓(�̄�(𝑡), �̄�(𝑡), 𝑝) (3.24)

C(𝑡) ≜ ∇𝑥𝑠(�̄�(𝑡), �̄�(𝑡), 𝑝) (3.25)

D(𝑡) ≜ ∇𝑢𝑠(�̄�(𝑡), �̄�(𝑡), 𝑝) (3.26)

G(𝑡) ≜ ∇𝑝𝑠(�̄�(𝑡), �̄�(𝑡), 𝑝). (3.27)

This leads to the following approximations of the non-convex constraints:

𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝) ≈ A(𝑡)𝑥(𝑡) +B(𝑡)𝑢(𝑡) + F(𝑡)𝑝+ 𝑟𝑓 (𝑡) (3.28)
𝑠(𝑥(𝑡), 𝑢(𝑡), 𝑝) ≈ C(𝑡)𝑥(𝑡) +D(𝑡)𝑢(𝑡) +G(𝑡)𝑝+ 𝑟𝑠(𝑡). (3.29)

To simplify the notation, the quantities 𝑟𝑓 and 𝑟𝑠 are introduced as:

𝑟𝑓 (𝑡) = 𝑓(�̄�(𝑡), �̄�(𝑡), 𝑝)−A�̄�(𝑡)−B�̄�(𝑡)− F𝑝 (3.30)
𝑟𝑠(𝑡) = 𝑠(�̄�(𝑡), �̄�(𝑡), 𝑝)−C�̄�(𝑡)−D�̄�(𝑡)−G𝑝. (3.31)

Relaxation of the Linearized Problem:

Since the linearization can render the original problem infeasible (as described in
chapter 3.2.1), a relaxed version of the convex problem is formulated following [12].
Therefore virtual control terms (𝜈𝑑 : R → R𝑛𝑥 , 𝜈𝑠 : R → R𝑛𝑠 , 𝜈𝑖𝑐 ∈ R𝑛𝑖𝑐 , 𝜈𝑡𝑐 ∈
R𝑛𝑡𝑐) are added to the path, initial, final and dynamic constraints. If the linearized
constraints now lead to an infeasible optimization problem, the constraint violation
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can be "absorbed" by the introduced buffer. Since these constraints are no longer
strictly enforced, SCvx can converge to a non-feasible solution regarding the linearized
constraints. Even though this is a known limitation of SCP-methods in general [12], it
can often be overcome by slightly tuning the algorithm parameters based on insight
about the problem gained from the magnitude of the constraint violations. Since
the initial and final constraints are already convex, they do not need to be relaxed.
Still, experience has shown that introducing virtual control terms for them also has
numerical advantages. For example, even a slight violation irrelevant to real-world
applications can give the optimizer more leeway to find a feasible solution. The
relaxed linearized constraints then have the following form [12]:

�̇�(𝑡) = A(𝑡)𝑥(𝑡) +B(𝑡)𝑢(𝑡) + F(𝑡)𝑝+ 𝑟𝑓 (𝑡) + 𝜈𝑑(𝑡) (3.32)
C(𝑡)𝑥(𝑡) +D(𝑡)𝑢(𝑡) +G(𝑡)𝑝+ 𝑟𝑠(𝑡) + 𝜈𝑠(𝑡) ≤ 0 (3.33)

ℎ𝑖𝑐(𝑥(0)) + 𝜈𝑖𝑐 = 0 (3.34)
ℎ𝑡𝑐(𝑥(𝑇 )) + 𝜈𝑡𝑐 = 0. (3.35)

To discourage constraint violations the 𝜈𝑑, 𝜈𝑠, 𝜈𝑖𝑐, 𝜈𝑡𝑐 are penalized in the objective
function. Where 𝜆 ∈ R with 𝜆 > 0 is a user-defined weight and must be chosen
sufficiently large. The objective function, including the introduced slack variables,
results in the following:

𝐽𝜆(𝑥, 𝑢, 𝑝, 𝜈𝑑, 𝜈𝑠, 𝜈𝑖𝑐, 𝜈𝑡𝑐) = 𝜑(𝑥(𝑇 ), 𝑝) + 𝜆(‖𝜈𝑖𝑐‖1 + ‖𝜈𝑡𝑐‖1)

+

∫︁ 𝑇

0

Γ(𝑥(𝑡), 𝑢(𝑡), 𝑝) + 𝜆(‖𝜈𝑑(𝑡)‖1 + ‖𝜈𝑠(𝑡)‖1)𝑑𝑡. (3.36)

Trust Region Formulation:

A key element of SCP-methods is to make sure that the obtained solution is feasible
with respect to the original non-convex constraints. Therefore the obtained approx-
imation has to be sufficiently accurate, which is closely related to the proximity of
the reference solution and the obtained solution. To make sure that the newly ob-
tained solution is sufficiently close to the reference solution, the following trust region
constraint is introduced [12]:

‖𝑥(𝑡)− �̄�(𝑡)‖∞ + ‖𝑢(𝑡)− �̄�(𝑡)‖∞ + ‖𝑝− 𝑝‖∞ ≤ 𝜂, (3.37)

with 𝜂 being the trust region radius.

Discretization:
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To turn the relaxed and linearized problem into a finite-dimensional optimization
problem that can be solved numerically, it has to be discretized on the interval [0, 1].
Since SCvx works with arbitrary discretization schemes, the method can be selected
freely. In this work, a forward Euler integration scheme was chosen. This leads to
the following optimization problem:

min
𝑥,𝑢,𝑝,𝜈𝑑,𝜈𝑠,𝜈𝑖𝑐,𝜈𝑡𝑐

𝐿𝜆(𝑥, 𝑢, 𝑝, 𝜈𝑑, 𝜈𝑠, 𝜈𝑖𝑐, 𝜈𝑡𝑐) (3.38)

subject to 𝑥𝑘+1 = A𝑘𝑥𝑘 +B𝑘𝑢𝑘 + F𝑘𝑝+ 𝑟𝑓,𝑘 + 𝜈𝑑,𝑘 (3.39)
C𝑘𝑥𝑘 +D𝑘𝑢𝑘 +G𝑘𝑝+ 𝑟𝑠,𝑘 + 𝜈𝑠,𝑘 ≤ 0 (3.40)
(𝑥𝑘, 𝑝) ∈ 𝒳𝑘, (𝑢𝑘, 𝑝) ∈ 𝒰𝑘 (3.41)
ℎ𝑖𝑐(𝑥(0)) + 𝜈𝑖𝑐 = 0 (3.42)
ℎ𝑡𝑐(𝑥(𝑁)) + 𝜈𝑡𝑐 = 0 (3.43)
‖𝑥𝑘 − �̄�𝑘‖𝑞 + ‖𝑢𝑘 − �̄�𝑘‖𝑞 + ‖𝑝− 𝑝‖𝑞 ≤ 𝜂, (3.44)

incorporating the convexified constraints (3.28) - (3.29), trust region constraints (3.37)
and virtual control terms (3.32) - (3.35) applied on the discrete nodes 𝑘 ∈ {0, ..., 𝑁−1}
[12] and the discrete objective function:

𝐿𝜆(𝑥, 𝑢, 𝑝, 𝜈𝑑, 𝜈𝑠, 𝜈𝑖𝑐, 𝜈𝑡𝑐) = 𝜑(𝑥𝑁 , 𝑝) + 𝜆(‖𝜈𝑖𝑐‖1 + ‖𝜈𝑡𝑐‖1)

+ ∆𝑡
𝑁−1∑︁
𝑘=0

Γ(𝑥𝑘, 𝑢𝑘, 𝑝) + 𝜆(‖𝜈𝑑,𝑘‖1 + ‖𝜈𝑠,𝑘‖1). (3.45)

Update of the Trust Region and the Reference Solution:

Since the trust region constraint limits the progress that can be made in one itera-
tion, the trust region radius greatly affects the trade-off between the speed at which
the algorithm converges and the accuracy of the obtained solution with respect to
the original constraints. The accuracy of the approximation can change depending
on the reference solution. Therefore, the trust region is iteratively updated based on
the accuracy of the convex approximation, as described by Malyuta et al. A valid
metric to quantify the approximation accuracy is comparing the approximated cost
improvement and the actual non-convex cost improvement in one iteration. To cal-
culate the optimal value of the non-convex problem the violations of the non-convex
constraints for each node 𝛿𝑑 ∈ R𝑁−1×𝑛𝑥 , 𝛿𝑠 ∈ R𝑁×𝑛𝑠 , 𝛿𝑖𝑐 ∈ R𝑛𝑖𝑐 , 𝛿𝑡𝑐 ∈ R𝑛𝑡𝑐 have to be
calculated. Where 𝛿𝑖𝑐 and 𝛿𝑡𝑐 can be obtained by mapping the solution of the convex
problem 𝑥*, 𝑢*, 𝑝* through the convex initial and terminal constraints. The violations
of the non-convex path constraints can be obtained similarly by clipping the values
of 𝑠 such that only the violation of the inequality constraint remains:
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𝜌 ≤ 𝜌0 : 𝜌0 ≤ 𝜌 ≤ 𝜌1 : 𝜌1 ≤ 𝜌 ≤ 𝜌2 : 𝜌2 ≤ 𝜌 :
𝜂 � max(𝜂𝑚𝑖𝑛,

𝜂
𝛽𝑠ℎ

) 𝜂 � max(𝜂𝑚𝑖𝑛,
𝜂

𝛽𝑠ℎ
) 𝜂 � 𝜂 𝜂 � min(𝜂𝑚𝑎𝑥, 𝛽𝑔𝑟𝜂)

�̄�, �̄�, 𝑝 � �̄�, �̄�, 𝑝 �̄�, �̄�, 𝑝 � 𝑥*, 𝑢*, 𝑝* �̄�, �̄�, 𝑝 � 𝑥*, 𝑢*, 𝑝* �̄�, �̄�, 𝑝 � 𝑥*, 𝑢*, 𝑝*

Table 3.1: Update of the trust region and reference solution based on the approxi-
mation accuracy.

𝛿𝑠,𝑘 = max(0, 𝑠(𝑥*𝑘, 𝑢
*
𝑘, 𝑝

*
𝑘)). (3.46)

To obtain the violations of the dynamic constraints 𝛿𝑑, the successor state for the first
𝑁 − 1 nodes has to be calculated by propagating 𝑢*𝑘 through the nonlinear dynamics
starting at 𝑥*𝑘. The obtained state �̂�*𝑘+1 can then be used to calculate the difference to
the optimal solution of the approximated problem 𝑥*𝑘+1. Propagating the control input
through the nonlinear dynamics is done using a forward Euler integration scheme as
follows:

�̂�*𝑘+1 = 𝑥*𝑘 + 𝑓(𝑥*𝑘, 𝑢
*
𝑘, 𝑝

*)∆𝑡 (3.47)
𝛿𝑑,𝑘 = 𝑥*𝑘+1 − �̂�*𝑘+1. (3.48)

The obtained non-convex constraint violations are used to define the nonlinear aug-
mented cost function to calculate the value of the non-convex problem as:

𝒥𝜆(𝑥, 𝑢, 𝑝) = 𝜑(𝑥𝑁 , 𝑝) + 𝜆(‖𝛿𝑖𝑐‖1 + ‖𝛿𝑡𝑐‖1)

+ ∆𝑡
𝑁−1∑︁
𝑘=0

Γ(𝑥𝑘, 𝑢𝑘, 𝑝) + 𝜆(‖𝛿𝑑,𝑘‖1 + ‖𝛿𝑠,𝑘‖1). (3.49)

Using 𝒥𝜆, the proposed accuracy metric 𝜌 ∈ R is defined by the ratio between the
approximated improvement ∆𝐿𝜆 of the reference solution to the new solution and the
actual improvement ∆𝒥𝜆 as:

𝜌 =
𝒥𝜆(�̄�, �̄�, 𝑝)− 𝐿𝜆(𝑥

*, 𝑢*, 𝑝*, 𝜈*𝑑 , 𝜈
*
𝑠 , 𝜈

*
𝑖𝑐, 𝜈

*
𝑡𝑐)

𝒥𝜆(�̄�, �̄�, 𝑝)− 𝒥𝜆(𝑥*, 𝑢*, 𝑝*)
=
𝒥𝜆 − 𝐿*

𝜆

𝒥𝜆 − 𝒥 *
𝜆

=
∆𝐿𝜆

∆𝒥𝜆

. (3.50)

According to this metric the trust region and the reference solution is updated as
described in table 3.1 [12].
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The thresholds 𝜌0, 𝜌1, 𝜌2 ∈ R with 0 < 𝜌0 < 𝜌1 < 𝜌2 < 1, the parameter 𝛽𝑔𝑟, 𝛽𝑠ℎ ∈ R
with 𝛽𝑠ℎ, 𝛽𝑔𝑟 ≥ 1 and the minimal and maximal trust region 𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥 ∈ R are
user-defined and control the update behavior of the algorithm. If the approximation
accuracy is deemed poor, i.e., smaller than a threshold 𝜌0, the new solution is rejected
and the trust region is shrunk by 𝛽𝑠ℎ. The reference solution is replaced with the new
optimal solution for an accuracy above 𝜌0 and below 𝜌1. With an accuracy above 𝜌1
and below 𝜌2, the trust region is kept the same and above 𝜌2, the trust region will be
increased by 𝛽𝑔𝑟.

Stopping Criterion:

Determining if the obtained solution is sufficiently close to a local optimum is done by
monitoring the convergence of the predicted cost improvement and the convergence
of the optimal state trajectory and optimal parameters (𝑥*, 𝑝*). The second criterion
was proposed by Malyuta et al., deviating from the original implementation of Mao
et al., to avoid unnecessary conservative behavior for problems where large changes
in the control trajectory imply only small changes in the state trajectory. If either
the change in the cost improvement or the change in the optimal trajectory from
iteration to iteration falls under the user-defined threshold (𝜖 ∈ R, 𝜖 > 0 for predicted
improvement and 𝜖𝑡 ∈ R, 𝜖𝑡 > 0 for trajectory change), the algorithm stops. The
introduced criteria then have the following form:

∆𝐿𝜆

𝐿*
𝜆

≤ 𝜖 (3.51)

‖𝑝* − 𝑝‖∞ + max
𝑘∈{1,...,𝑁}

‖𝑥*𝑘 − �̄�𝑘‖∞ = ∆𝑝∞ +∆𝑥∞,𝑚𝑎𝑥 ≤ 𝜖𝑡. (3.52)

Algorithm:

The algorithm resulting from combining the aforementioned algorithmic choices is
shown in algorithm 1.

31



Algorithm 1 SCvx Algorithm
1: procedure SCvx(�̄�, �̄�, 𝑝, 𝜆, 𝜌0, 𝜌1, 𝜌2, 𝛽𝑠ℎ, 𝛽𝑔𝑟, 𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥)

2:

Given: Reference solution �̄�, �̄�, 𝑝; weight for virtual control 𝜆;

thresholds for the approximation accuracy 𝜌0, 𝜌1, 𝜌2;

parameter for shrink and growth rate 𝛽𝑠ℎ, 𝛽𝑔𝑟;

initial, minimal and maximal trust region 𝜂, 𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥

3: while True do

4: 𝑥*, 𝑢*, 𝑝* ← SolveProblem(�̄�, �̄�, 𝑝) ◁ solve problem (eq. 3.38 - 3.43)

5: ∆𝒥𝜆,∆𝐿𝜆 ← ComputeImprovement(𝑥*, 𝑢*, 𝑝*, �̄�, �̄�, 𝑝)

6: if ∆𝐿𝜆/𝐿
*
𝜆 ≤ 𝜖 or ∆𝑝∞ +∆𝑥∞,𝑚𝑎𝑥 ≤ 𝜖𝑡 then ◁ check stopping criteria

7: return 𝑥*, 𝑢*, 𝑝*

8: compute 𝜌 = Δ𝐿𝜆

Δ𝒥𝜆
◁ calculate approximation accuracy

9: if 𝜌 ≤ 𝜌0 then

10: �̄�, �̄�, 𝑝← �̄�, �̄�, 𝑝 ◁ reject solution

11: 𝜂 ← max(𝜂𝑚𝑖𝑛, 𝜂/𝛽𝑠ℎ) ◁ shrink trust region

12: else

13: �̄�, �̄�, 𝑝← 𝑥*, 𝑢*, 𝑝* ◁ update reference solution

14: 𝜂 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(𝜂𝑚𝑖𝑛, 𝜂/𝛽𝑠ℎ), if 𝜌0 ≤ 𝜌 ≤ 𝜌1

𝜂, if 𝜌1 ≤ 𝜌 ≤ 𝜌2

min(𝜂𝑚𝑎𝑥, 𝛽𝑔𝑟𝜂), if 𝜌2 ≤ 𝜌

◁ update trust region
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3.3 SCvx Python Implementation

The algorithm discussed in section 3.2.2 has been implemented in Python for this
project. The implementation was based on a rudimentary SCP-version provided by
Wolfgang Hönig4, which already included a trust region mechanism and was able to
handle nonlinear dynamic constraints as well as box-constraints on inputs and initial
constraints. A solver, using the same algorithm as foundation, was already imple-
mented by Malyuta et al. in [12]5. However, this solver only implements collision
avoidance for ellipsoid obstacles and a double-integrator model that would not in-
clude the full nonlinear dynamics of the multirotor model was implemented. Also,
the solver was implemented in Julia and, therefore, difficult to integrate into the ex-
isting software architecture of the LIS group6 written mostly in Python and C++.
Furthermore, implementing the solver from scratch improves the understanding of
the inner workings and was therefore considered necessary.

In the following, the implementation of the motion planning problem within the
SCvx-framework in Python will be described in detail and the convergence behavior
of the implementation will be validated. CVXPY7 is used to formulate the convex sub-
problem and provide an interface to sophisticated convex solvers. CVXPY is a Python
framework developed for formulating and solving convex optimization problems. As
a convex solver Gurobi is used since it outperformed comparable convex solvers in
practice.

3.3.1 Problem Implementation

In the following, the implementation details to the algorithmic components described
in section 3.2.2 are given.

Discrete Multirotor Model:

The dynamic equations are discretized using a forward Euler integration scheme,
obtaining the state at 𝑘 + 1 as follows:

𝑥𝑘+1 = 𝑥𝑘 +∆𝑡𝑇𝑓(𝑥𝑘, 𝑢𝑘) (3.53)

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝑇 ). (3.54)

Here the step size of the discretization ∆𝑡 is calculated from the desired number of
time steps 𝑁 with ∆𝑡 = 1/𝑁 and the final time 𝑇 is incorporated into the parameter
vector. The final time can either be treated as an optimization variable for time-

4Independent junior research group leader at TU-Berlin and co-supervisor of this thesis
5https://github.com/UW-ACL/SCPToolbox.jl/tree/csm
6Learning and Intelligent Systems group at TU-Berlin
7https://github.com/cvxpy/cvxpy
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optimal problems or be constrained for fixed final-time problems. In this work, only
fixed final-time problems will be considered. The discrete dynamics 𝑓(𝑥𝑘, 𝑢𝑘, 𝑇 ) are
implemented in the shown form as a step-function in the dynamic models of the
framework. An implementation of the nonlinear dynamic equations of a multirotor
with a number of motors 𝑛𝑚 = 4 was already provided. This model was extended
to rotor numbers 𝑛𝑚 ∈ {2, 3, 4, 6, 8}. Additionally, the model only considering the
double integrator dynamics was added. For the nonlinear dynamic model, the inertia
matrix 𝐽 of the multirotor was approximated by assuming the motors as point masses.
The weights (𝑚𝑖) of the point masses were calculated from the overall weight of the
multirotor provided by the user, leading to the following inertia matrix:

J ≈

⎛⎝ ∑︀𝑛𝑚

𝑖 𝑚𝑖𝑙
2
𝑖,𝑥 0 0

0
∑︀𝑛𝑚

𝑖 𝑚𝑖𝑙
2
𝑖,𝑦

0 0
∑︀𝑛𝑚

𝑖 𝑚𝑖𝑙
2
𝑖,𝑧

⎞⎠ . (3.55)

Where 𝑙𝑖,𝑥, 𝑙𝑖,𝑦, 𝑙𝑖,𝑧 are the distance of the 𝑖-th point mass to the 𝑥-,𝑦- and 𝑧-axis.

Initial Guess:

SCP-methods are locally optimal, only. Therefore, the quality of the provided refer-
ence solution �̄�, �̄�, 𝑝 is crucial to the convergence behavior of the algorithm and the
quality of the final solution. In this work, a straight-line interpolation was used as
reference solution �̄� for the first iteration for the state trajectory and a constant input
corresponding to the hover state where used for the control trajectory �̄�. For the full
model, this results in:

𝑝𝑘 = (1− 𝑘

𝑁
)𝑝0 +

𝑘

𝑁
𝑝𝑇 , 𝑘 ∈ 0, ..., 𝑁 (3.56)

𝑣𝑘 = (1− 𝑘

𝑁
)𝑣0 +

𝑘

𝑁
𝑣𝑇 , 𝑘 ∈ 0, ..., 𝑁 (3.57)

�̂�𝑘 = (1− 𝑘

𝑁
)𝜔0 +

𝑘

𝑁
𝜔𝑇 , 𝑘 ∈ 0, ..., 𝑁 (3.58)

�̂�𝑘 =

⎛⎜⎝ 𝑓1
...
𝑓𝑛𝑚

⎞⎟⎠ , 𝑓𝑖 =
𝑚𝑔

𝑛𝑚

, 𝑖 ∈ {1, ..., 𝑛𝑚}. (3.59)

Since quaternions require non-equidistant steps in their components to interpolate
between two orientations continuously, quaternion spherical line interpolation [64] is
used to calculate the reference solution. Resulting in:

𝑞𝑘 = 𝑞0(𝑞
−1
0 𝑞𝑇 )

𝑘
𝑁 , 𝑘 ∈ 0, ..., 𝑁. (3.60)
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For the double integrator model, only (3.56) and (3.57) are used and the input refer-
ence trajectory is composed of zeros.

For the final-time reference solution 𝑇 , the middle of the defined interval is chosen
as:

𝑇 =
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
. (3.61)

To increase the numerical stability of the convergence behavior, the noise 𝑧, drawn
from a normal distribution, was added to the reference solution. Where the mean of
the distribution from which the noise was drawn is zero and the standard deviation
depends on the feasible range of the states, inputs, and parameters leading to:

𝑧 ∼ 𝒩 (0, 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) (3.62)
𝑦𝑘 = 𝑦𝑘 + 𝛼𝑛𝑧. (3.63)

𝑦 denotes states and inputs and 𝛼𝑛 is a user-defined factor to control the added noise.

Dynamic Constraints:

To make the linearization of the implemented dynamics 𝑓(𝑥𝑘, 𝑢𝑘, 𝑇 ) apply to differ-
ent dynamic models, by avoiding calculating the Jacobians analytically, the Jacobians
A𝑘,B𝑘,F𝑘 are obtained numerically using JAX8 (Autograd). JAX can differentiate
native Python and NumPy functions, such as the step function implemented in the
dynamic model. The discrete dynamic constraints at every time step are then imple-
mented as

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝑝) +A𝑘(𝑥𝑘 − �̄�𝑘) +B𝑘(𝑢𝑘 − �̄�𝑘) + F𝑘(𝑇 − 𝑇 ) + 𝜈𝑑𝑘 . (3.64)

Where 𝑇 − 𝑇 = 0 for fixed final time problems.

Collision Avoidance (Non-Convex Path Constraints):

In order to impose constraints regarding collision avoidance, it is necessary to calculate
the signed distances 𝑑𝑖 between the multirotor and the elements of the set of stationary
obstacles 𝒪 in the environment. To do this efficiently, the multirotor is approximated
at its current position by the sphere 𝑆(𝑡), while the obstacles are represented by
arbitrary shapes 𝑂𝑖 ∈ 𝒪, 𝑖 ∈ {1, ..., 𝑛𝑜𝑏𝑠}. The sphere’s radius 𝑟𝑆 is determined by the
arm length 𝑙 of the multirotor for the full model. For the double integrator model,
𝑟𝑆 ̸= 0 is chosen to avoid numerical problems. 𝑟𝑆 = 1−4 turned out to be a suitable

8https://github.com/google/jax
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choice in practice. To prevent the multirotor from intersecting with the obstacles
along its trajectory 𝑥(𝑡), the general obstacle constraints:

𝑆(𝑡) ∩𝑂𝑖 = ∅, ∀𝑖 ∈ {1, ..., 𝑛𝑜𝑏𝑠}, (3.65)

can be reformulated using the signed distances 𝑑𝑖 as:

𝑑𝑖(𝑡) ≥ 0 ,∀𝑖 ∈ {1, ..., 𝑛𝑜𝑏𝑠}. (3.66)

The signed distance becomes negative for intersecting shapes and positive for non-
intersecting shapes. To formulate the constraints in SCvx, an approach is used that
was originally proposed by Virgili-Llop et al. in [65]. Since (3.66) are in general non-
convex path constraints, they are convexified as described in (3.29). Therefore the
constraint gives the following convex approximation (consistent with (3.25) - (3.27))
of the signed distance around the reference trajectory �̄�(𝑡):

𝑑𝑖(𝑡) ≈ 𝑑𝑖(𝑡) +
[︀
𝑧𝑖(𝑡)

𝑇J𝑖(𝑡)
]︀⏟  ⏞  

C(𝑡)

(𝑥(𝑡)− �̄�(𝑡)) (3.67)

𝑧𝑖(𝑡) =

{︂
𝑝𝑖,𝑆(𝑡)− 𝑝𝑖,𝑂(𝑡), if 𝑑𝑖(𝑡) > 0
𝑝𝑖,𝑂(𝑡)− 𝑝𝑖,𝑆(𝑡), if 𝑑𝑖(𝑡) < 0

(3.68)

𝑧𝑖(𝑡) =
𝑧𝑖(𝑡)

‖𝑧𝑖(𝑡)‖2
. (3.69)

Here 𝑝𝑖,𝑆(𝑡) ∈ 𝑆(𝑡) and 𝑝𝑖,𝑂(𝑡) ∈ 𝑂𝑖 (supporting points) are the closest points on the
surface of the multirotor and the 𝑖-th obstacle in the reference solution. Moreover
J𝑖(𝑡) ∈ R3×3 denotes the analytical Jacobian of 𝑝𝑖,𝑆(𝑡) only depending on the posi-
tion. Therefore the Jacobian is the identity matrix since 𝑆(𝑡) is a sphere. The signed
distance and the closest supporting points of the reference solution are obtained us-
ing the flexible collision library (FCL)9 and the FCL Python-bindings10. 𝑧𝑖(𝑡) can
intuitively be understood as the direction in which the nearest point 𝑝𝑖,𝑂 lies on the
obstacle. Therefore 𝑧𝑖(𝑡) is not defined if the reference trajectory is in contact with
an obstacle (𝑑𝑖(𝑡) = 0, 𝑝𝑖,𝑆(𝑡) = 𝑝𝑖,𝑂(𝑡)), leading to a partly unconstrained trajectory
in the next iteration. To ensure constrained behavior in practice, the radius of the
spherical approximation 𝑆(𝑡) for the time point where 𝑑𝑖(𝑡) = 0 is decreased by an
infinitesimal amount such that the direction information can be obtained again. The
used discrete constraints formulation is implemented as follows:

9https://github.com/flexible-collision-library/fcl
10https://github.com/BerkeleyAutomation/python-fcl
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𝑑𝑖,𝑘+1 = 𝑑𝑖,𝑘 + 𝑧𝑖,𝑘(𝑡)
𝑇 I3(𝑥𝑘 − �̄�𝑘) ≥ 0, ∀𝑖 ∈ {1, ..., 𝑛𝑜𝑏𝑠}. (3.70)

A drawback of this formulation is the possibility of colliding connections between
the discrete non-colliding states. Especially when turning sharp corners, this effect
plays a role. In practice, this problem is approached by increasing 𝑆(𝑡) such that the
trajectory becomes collision free again.

Box-Constraints (Convex Path Constraints):

The convex path constraints are formulated as simple box-constraints on the states,
inputs and parameters:

𝑥𝑘 ≥ 𝑥𝑚𝑖𝑛, 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥 (3.71)
𝑢𝑘 ≥ 𝑢𝑚𝑖𝑛, 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 (3.72)
𝑇 ≥ 𝑇𝑚𝑖𝑛, 𝑇 ≤ 𝑇𝑚𝑎𝑥. (3.73)

where 𝑇𝑚𝑖𝑛 = 𝑇𝑚𝑎𝑥 for fixed final time problems.

Initial and Final State Constraints:

The initial and final state constraints are already convex and implemented as follows:

𝑥𝑘=0 = 𝑥0, 𝑥𝑘=𝑁 = 𝑥𝑁 . (3.74)

Objective:

The minimized objective should represent the control effort, i.e., the inputs. Therefore
the sum of squares of the inputs is chosen. Due to the introduced slack variables used
to avoid artificial infeasibility, the objective function has to be augmented to penalize
these to avoid constraints violations. The final cost function then results in

𝐿𝜆,𝛽,𝛾(𝑢, 𝑇, 𝜈𝑑, 𝜈𝑠, 𝜈𝑖𝑐, 𝜈𝑡𝑐) = 𝜆(‖𝜈𝑖𝑐‖1 + ‖𝜈𝑡𝑐‖1)

+ 𝛽(1− 𝛾)[
𝑁−1∑︁
𝑘

𝑛𝑚∑︁
𝑖

𝑢2𝑘,𝑖 + 𝜆(‖𝜈𝑑,𝑘‖1 + ‖𝜈𝑠,𝑘‖1)]∆𝑡+ 𝛾𝑇. (3.75)

Where 𝛽 is the weight of the inputs and 𝛾 is used to tune the trade-off between con-
sumed energy and final time when free final time problems are considered. Therefore
throughout this work, 𝛾 = 0 is chosen.
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Helper Variables:

In addition to the algorithmic components described in section 3.2.2, further decision
variables are used by Malyuta et al. These are added to reformulate the trust region
constraints and objective function. Where for the trust region the vectors of decision
variables 𝛿𝑥 ∈ R𝑁 , 𝛿𝑢 ∈ R𝑁 , 𝛿𝑝 ∈ R are introduced to augment the constraints as:

‖𝑥𝑘 − �̄�𝑘‖∞ ≤ 𝛿𝑥,𝑘, (3.76)
‖𝑢𝑘 − �̄�𝑘‖∞ ≤ 𝛿𝑢,𝑘, (3.77)
‖𝑝𝑘 − 𝑝𝑘‖∞ ≤ 𝛿𝑝,𝑘, (3.78)
𝛿𝑥,𝑘 + 𝛿𝑢,𝑘 + 𝛿𝑝,𝑘 ≤ 𝜂. (3.79)

For the objective function 𝑃 ∈ R𝑁−1, 𝑃𝑖 ∈ R, 𝑃𝑓 ∈ R are introduced as new decision
variables. These are used to augment the objective function to

‖𝜈𝑑,𝑘‖1 + ‖𝜈𝑠,𝑘‖1 ≤ 𝑃𝑘, ∀𝑘 ∈ {0, ..., 𝑁 − 1}, (3.80)
‖𝜈𝑖𝑐‖1 ≤ 𝑃𝑖, (3.81)
‖𝜈𝑡𝑐‖1 ≤ 𝑃𝑓 , (3.82)

𝐿𝜆,𝛾(𝑢, 𝑇, 𝜈𝑑, 𝜈𝑠, 𝜈𝑖𝑐, 𝜈𝑡𝑐) = 𝜆(𝑃𝑖 + 𝑃𝑓 ) + (1− 𝛾)[
𝑁−1∑︁
𝑘

𝑛𝑚∑︁
𝑖

𝑢2𝑘,𝑖 + 𝑃𝑘]∆𝑡+ 𝛾𝑇 (3.83)

Note that all introduced augmentations do not change the local or global minima.
Nevertheless, the augmented optimization problem has additional dimensions chang-
ing its structure and giving the optimizer more flexibility in its convergence. Even
though these are not based on a theoretical consideration, they proved to lead to
better solutions in specific scenarios by helping the optimizer avoid getting stuck in
infeasible local minima.

3.3.2 Structure of the Python Framework

The framework optimizes a given trajectory generation problem following the flowchart
shown in figure 3-3. The implementation has the following key components:

• Dynamic Model: In the dynamic models, two things are defined: Firstly,
the physical parameters, such as the geometry and inertia of the multirotor
and secondly the discrete dynamic equations of the system. The models are
initialized with user-defined parameters such as the number of rotors of the
multirotor.

• Problem Definition: It contains the actual problem specifications like the
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initial state 𝑥0, the end state 𝑥𝑇 , the final time 𝑇 and the shape and position
of the obstacles.

• Collision Handler: The collision module is used to calculate the signed dis-
tances 𝑑𝑖 and the closest supporting points 𝑝𝑖,𝑚, 𝑝𝑖,𝑜 on the obstacles 𝑂𝑖 and
the model approximation 𝑆𝑖 at all discrete waypoints. It is initialized with the
robot model and provides methods to register objects that should be avoided.

• SCvx: Here the actual SCvx-Algorithm is implemented and its parameters,
such as the weights on slack and input and the initial trust region, are de-
fined. Also, the described constraints and the objective are implemented here.
The SCvx module additionally provides a method to solve the defined motion
planning problem.

• Check: To check if the obtained solution is feasible with respect to the origi-
nally imposed constraints, the violations of the non-convex constraints are eval-
uated.

Problem Definition
Dynamic Model SCvx

Collision Handler

Check !*

InitialGuess
Figure 3-3: SCvx-framework flowchart.
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3.3.3 Validation

In the following, our SCvx-framework in Python (SCvx-Python) will briefly be com-
pared to the original implementation in Julia (SCvx-Julia). Therefore the multirotor
motion optimization problem implemented by Malyuta et al. was adapted to only
one spherical obstacle and new initial and final states while keeping the remaining
constraints the same (compare [12, page 48–50]). Also, the same SCvx specific pa-
rameters, such as the initial trust region and the weight on the slack cost, were used
(compare [12, page 49], table 2, Algorithmic parameters). The problem used to com-
pare the implementations is based on the double integrator model, which already
leads to linear dynamics. The collision avoidance is formulated in an analytical form,
which can only handle ellipsoid objects ([12, page 49], equation (113)). As a convex
solver, ECOS was used since the implementation of Malyuta et al. did not support
Gurobi. SCvx-Python and SCvx-Julia were run for 15 iterations and the following
four quantities were obtained at each iteration: The approximation accuracy 𝜌, the
nonlinear cost 𝒥𝜆, the trust region radius 𝜂 and the distance to the optimal solution
∆𝑥 of each of the implementations. The latter is closely related to the trajectory
convergence criterion discussed in section 3.2.2 and defined as follows:

∆𝑥 =
‖𝑥𝑖 − 𝑥*‖2
‖𝑥*‖2

. (3.84)

Here 𝑥𝑖 is the trajectory at the 𝑖-th iteration and 𝑥* is the converged solution returned
by the frameworks. The history of the quantities mentioned above is shown in figure
3-4 and the convergence behavior of the positional part of the trajectory is shown in
figure 3-5. As presented in the former, the convergence of SCvx-Python is, similar to
SCvx-Julia, with a slight offset. Experience has shown that convergence behavior is
prone to numerical imprecision. For example, changing the numerical precision of the
calculation of A𝑘,B𝑘,F𝑘 from single-precision (32 bit) to double-precision (64 bit) has
a significant influence on the convergence behavior. The remaining slight difference in
the convergence behavior is considered unimportant since the distance to the optimal
solution lies in roughly the same region and the algorithms will converge in the same
number of iterations. Also, the non-convex cost follows nearly the same path, resulting
in just a slightly worse solution for SCvx-Python. The trust region update is the same
for both implementations and the approximation accuracy shows only insignificant
differences, with slightly better accuracy for SCvx-Python. Evaluating the total time
needed for a solution would not provide a fair comparison due to Julia’s significant
speed advantages. Since this was an accepted downside of implementing the algorithm
in Python, SCvx-Python was not evaluated based on total run time.
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Figure 3-4: History of characteristic quantities of SCvx-Python and SCvx-Julia.
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3.4 K-Order Markov Optimization (KOMO)

In this section, the second motion planning method used in this work will be described
in detail. Therefore the mathematical foundation of KOMO (K-Order Markov Opti-
mization) and the core methods of the RAI-framework (Robotic AI) in which KOMO
is implemented will be described. KOMO is a sophisticated method for efficiently solv-
ing robot motion planning problems originally introduced in 2014 [66]. Even though
it belongs to the class of optimization-based methods and is considered an optimal
local planner, experience has shown that KOMO is able to find feasible solutions for
a wide variety of different kinematic problems. Furthermore, in comparison to other
motion planning methods, KOMO represents the trajectory only in configuration
space (𝑥) instead of phase space (𝑥, �̇�), handling differential quantities by finite dif-
ferences of consecutive configurations. This leads to a structure of the approximate
hessian that can be exploited for efficient computation. Another advantage of the
chosen representation is that it renders discretization schemes necessary for solving
dynamical problems obsolete [67]. In general, the RAI-framework aims to separate
the nonlinear optimizer and the abstraction of the motion planning problem into the
standard form of an optimization problem:

min
𝑥
𝐽(𝑥) 𝑠.𝑡. 𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0. (3.85)

With optimiaztion variables 𝑥 ∈ R𝑛, objective function 𝐽 : R𝑛 → R, inequality
constraints 𝑔 : R𝑛 → R𝑚 and equality constraints ℎ : R𝑛 → R𝑙.

3.4.1 Mathematical Formulation

The foundation of KOMO’s mathematical problem formulation is, as the name im-
plies, the k-order Markov assumption, describing the short-term dependency of con-
figurations along the trajectory. Let 𝑥 ∈ R𝑁×𝑛𝑥 be a trajectory consisting of 𝑁
configurations in an 𝑛𝑥-dimensional configuration space and the objective function
𝐽𝑡 : R𝑛𝑥 → R, the inequality constraints 𝑔𝑡 : R𝑛𝑥 → R𝑛𝑔 and the equality constraints
ℎ𝑡 : R𝑛𝑥 → R𝑛ℎ be smooth. Making use of the Markov assumption the standard
problem (3.85) can be formulated as a combination of terms each only depending on
𝑘 + 1 configurations choosing 𝐽(𝑥), 𝑔(𝑥) and ℎ(𝑥) to:

𝐽(𝑥) =
∑︁
𝑡

𝐽𝑡(𝑥𝑡−𝑘:𝑡), 𝑔(𝑥) =
⨂︁
𝑡

𝑔𝑡(𝑥𝑡−𝑘:𝑡), ℎ(𝑥) =
⨂︁
𝑡

ℎ𝑡(𝑥𝑡−𝑘:𝑡). (3.86)

The outer product
⨂︀

denotes the constraints at each time step 𝑡 being stacked into
the constraint functions over the full path. This leads to the following optimization
problem:
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min
𝑥

∑︁
𝑡

𝐽𝑡(𝑥𝑡−𝑘:𝑡) 𝑠.𝑡. 𝑔𝑡(𝑥𝑡−𝑘:𝑡) ≤ 0, ℎ𝑡(𝑥𝑡−𝑘:𝑡) = 0, ∀𝑡. (3.87)

Here the tuples 𝑥𝑡−𝑘:𝑡 = (𝑥𝑡−𝑘, 𝑥𝑡−𝑘+1, ..., 𝑥𝑡) describe the configurations considered
at each time point and the initial configurations 𝑥𝑘−1:0 are assumed to be known.
Each instance of 𝐽𝑡(𝑥𝑡−𝑘:𝑡), 𝑔𝑡(𝑥𝑡−𝑘:𝑡) and ℎ𝑡(𝑥𝑡−𝑘:𝑡) is called a feature and encodes e.g.
penalties on the distance to a goal configuration or constraints on the velocity of the
system calculated by finite differences of the configurations. All resulting features
are stacked into a vector of appropriate size. Due to the structure introduced by the
short-term dependency of the Markov property, the Jacobian and the pseudo-Hessian
of the stacked features result in banded and banded-symmetric matrices which are
efficient to compute, store and factorize [66]. This is done by using row-shifted matrix
packing, which only stores the (𝑘 + 1)𝑛 non-zero elements of the Jacobian.

3.4.2 Framework / API

Formulating a motion planning problem for complex dynamic systems like robots
requires condensing abstract goals like obstacle avoidance into an efficiently solvable
problem formulation. The RAI-framework11, described in [67], simplifies this by con-
verting user-defined goals into the aforementioned general form of an optimization
problem, storing the Jacobian and the Hessian efficiently. With this, the framework
decouples the problem formulation from actually solving it, allowing for the use of
generic NLP-Solvers. Specific data structures and methods are used to represent the
obstacles, the dynamic model, the constraints, and the objectives of the planning
problem. These are briefly explained as they form the core of the framework.

Configurations: Configurations are the basic representation of the scenery used by
the framework to define a motion planning problem [67]. In these, all objects (frames)
from a 3D environment are stored and it is defined how they are kinematically linked.
The single frames in a configuration are connected by joints with certain degrees of
freedom and the vector of all combined degrees of freedom of one configuration is
called joint state. Configurations also store information about acting contact forces
between frames in a scenery. The mentioned data is stored in a structure 𝐶(𝑥), where
a joint configuration 𝑥 is mapped through a kinematic engine 𝐶.

Frames: Frames are the elementary structures within a configuration [67]. Each
frame has different properties, such as degrees of freedom describing its orientation
and position relative to its parents. The 3D shape of a frame is represented by a mesh
that can be used for proximity checking. Frames also include the inertia of a link.

11https://github.com/MarcToussaint/rai
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Features: Features are the interface between configurations and numerics, repre-
senting any numerical quantity that might be calculated for a configuration [67] (e.g.,
the distance between two frames or the system’s total energy). Features often repre-
sent errors such as the distance between a desired and an actual position or errors in
Newton-Euler equations. The actual optimization objective is then conveniently for-
mulated as bringing all features to zero. A feature vector 𝜑𝑡 : (𝐶𝑡−𝑘:𝑡)→ (𝑦,J) maps
𝑘 + 1 consecutive configurations to the desired numerical quantities 𝑦 ∈ R𝑑 and its
Jacobian J ∈ R𝑑×𝑛. Where 𝑑 = 𝑑𝑖𝑚(𝜑) is the dimension of the calculated numerical
quantities. Additionally, a linear transformation can be defined by the parameters 𝜌
and 𝑦*, where 𝜌 acts as a weight and 𝑦* shifts the target value of the features away
from zero. The transformed feature vector then has the following form:

𝜑𝑡(𝐶𝑡−𝑘:𝑡)𝑦 = 𝑑𝑖𝑎𝑔(𝜌)(𝜑𝑡(𝐶𝑡−𝑘:𝑡)𝑦 − 𝑦*), (3.88)

where 𝜑𝑡(𝐶𝑡−𝑘:𝑡)𝑦 and 𝜑𝑡(𝐶𝑡−𝑘:𝑡)𝑦 denote only the part returning 𝑦. The transformed
feature then still gives the Jacobian of the shifted 𝑦.

3.4.3 Solver

As mentioned, KOMO formulates the motion planning problem as a nonlinear con-
strained optimization problem. This section describes the augmented Lagrangian
method used internally to solve the nonlinear problem formulated with KOMO. Since
the KOMO-framework handles the formulation of the problem into a NLP in standard
form (3.85), this formulation will be used throughout the next section.

Karush-Kuhn-Tucker Conditions

The necessary optimality conditions (Karush-Kuhn-Tucker conditions (KKT-conditions))
for 𝑥* being a local solution will be briefly discussed to motivate the augmented La-
grangian. Therefore the Lagrangian of the problem in standard form is defined as:

ℒ(𝑥, 𝜆, 𝜅) = 𝐽(𝑥) + 𝜆𝑇𝑔(𝑥) + 𝜅𝑇ℎ(𝑥). (3.89)

with the vectors of Lagrangian multipliers 𝜆 ∈ R𝑛𝑔 , 𝜅 ∈ R𝑛ℎ and 𝜆𝑖 ≥ 0. Making use
of the Lagrangian function, the KKT-conditions [68] are defined as follows:

If 𝑥* is a local solution to problem (3.85), the objective and constraint functions
are continuously differentiable and the linear independence constraint qualification
[68] holds, then there exist vectors of Lagrangian multipliers 𝜆* and 𝜅* such that the
conditions are satisfied:

44



1. ∇𝑥*ℒ(𝑥*, 𝜆*, 𝜅*) = ∇𝐽(𝑥*) +
∑︁
𝑖=1

𝜆*𝑖∇𝑔𝑖(𝑥*) +
∑︁
𝑗=1

𝜅*𝑗∇ℎ𝑗(𝑥*) = 0 (3.90)

2. 𝑔𝑖(𝑥
*) ≤ 0, ℎ𝑗(𝑥

*) = 0, ∀𝑖, 𝑗 (3.91)
3. 𝜆*𝑖 ≥ 0, ∀𝑖 (3.92)
4. 𝜆*𝑖 𝑔𝑖(𝑥

*) = 0, ∀𝑖. (3.93)
(3.94)

Intuitively, the first condition can be interpreted as a stationarity condition. This
implies that at the optimum 𝑥* has to be an equilibrium between the gradients of the
active inequality and equality constraints and the gradient of the objective function.
The second condition indicates primal feasibility meaning the problem is feasible re-
garding the constraints. Enforcing all 𝜆*𝑖 to be positive ensures that the directional
dependency of the inequality constraints is taken into account. The fourth condi-
tion elegantly implies that either the optimal solution lies on the boundary of the
feasible region (𝑔𝑖(𝑥*) = 0) or inside it. In the first case, the constraint’s gradient
prevents the objective’s gradient from pushing the solution 𝑥* outside of the bound-
ary (𝜆*𝑖∇𝑔𝑖(𝑥*) ̸= 0). In the second case, the optimal solution lies within the feasible
region and therefore the search is only guided by the gradients of the objective and
equality constraints, leading to 𝜆*𝑖 = 0 and (𝜆*𝑖∇𝑔𝑖(𝑥*) = 0). These conditions use
only first-order information and are necessary for 𝑥* being an optial solution but not
sufficient. To determine if a solution fulfilling the KKT-conditions is a local optimum
second order optimality conditions also have to apply [68]. Still, these are not further
discussed in this work since they seldomly play a role in numerical methods.

Augmented Lagrangian

The applied constraints are often incorporated into the objective function to use
gradient-based methods to solve a constrained optimization problem. As the name
already implies, the Augmented Lagrangian uses a formulation closely related to the
Lagrangian of the optimization problem to handle equality and inequality constraints.
The used formulation is based on the squared penalty method, which will therefore
be briefly discussed for problems with only equality constraints:

min
𝑥
𝐽(𝑥) 𝑠.𝑡. ℎ𝑗(𝑥) = 0, ∀𝑗. (3.95)

Squared Penalty Methods:

The squared penalty method includes constraints into the objective by adding the
squared constraints violations to it, leading to the following unconstrained optimiza-
tion problem:
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min
𝑥
𝐽(𝑥) +

𝜈

2

∑︁
𝑗

ℎ2𝑗(𝑥). (3.96)

Where 𝜈 ∈ R, 𝜈 ≥ 0 is a weight on the constraints violations. The solution of the
modified problem for 𝜇 < ∞ approximates the original problem and only respects
the constraints to a certain degree. By iteratively increasing 𝜇 and re-solving the
problem using the former solution as an initial guess, the obtained solution converges
to the actual solution of the original problem. For large 𝜇, the Hessian of the objec-
tive becomes increasingly ill-conditioned and leads to performance issues when using
algorithms for unconstrained problems such as quasi-Newton methods [68].

Augmented Lagrangian for Equality Constrained Problems:

Since the last element of a finite series of solutions obtained by the iterative approach
of the squared penalty method will still violate the constraints by a small amount,
it would be beneficial to approximate this systematic violation and tackle it in the
objective directly. The Augmented Lagrangian achieves this by adding an approxi-
mation of the Lagrangian multipliers 𝜅𝑗 to formulation (3.96) based on the solution
of the last iteration [68]. The augmented objective to minimize then has the following
form:

ℒ𝐴(𝑥, 𝜅, 𝜈) = 𝐽(𝑥) +
𝜈

2

∑︁
𝑗

ℎ2𝑗(𝑥) +
∑︁
𝑗

𝜅𝑗ℎ𝑗(𝑥). (3.97)

Where the solution 𝑥*𝑘 minimizing (3.97) in the 𝑘-th iteration fulfills the optimality
condition for unconstrained optimization ∇ℒ𝐴(𝑥, 𝜅, 𝜈) = 0 [68] as follows:

𝑥*𝑘 = argmin
𝑥

𝐽(𝑥) +
𝜈𝑘
2

∑︁
𝑗

ℎ2𝑗(𝑥) +
∑︁
𝑗

𝜅𝑗,𝑘ℎ𝑗(𝑥) (3.98)

0 = ∇𝐽(𝑥*𝑘) + 𝜈𝑘
∑︁
𝑗

ℎ𝑗(𝑥
*
𝑘)∇ℎ𝑗(𝑥*𝑘) +

∑︁
𝑗

𝜅𝑗,𝑘∇ℎ𝑗(𝑥*𝑘). (3.99)

The update of the approximation 𝜅𝑗 in every iteration can then be formulated from
condition (3.99) as:

∑︁
𝑗

𝜅𝑗,𝑘+1∇ℎ𝑗(𝑥*𝑘) = 𝜈𝑘
∑︁
𝑗

ℎ𝑗(𝑥
*
𝑘)∇ℎ𝑗(𝑥*𝑘) +

∑︁
𝑗

𝜅𝑗,𝑘∇ℎ𝑗(𝑥*𝑘) (3.100)

𝜅𝑗,𝑘+1 = 𝜅𝑗,𝑘 + 𝜈𝑘ℎ𝑗(𝑥
*
𝑘). (3.101)
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The Augmented Lagrangian method tackles one of the significant downsides of the
squared penalty method by avoiding the ill-conditioning of the Hessian and also
largely preserves the smoothness of the objective function when incorporating the
constraints [68]. Also, it provides a much better constraint approximation [69].

Augmented Lagrangian for Inequality Constrained Problems:

To incorporate inequality constraints in the Augmented Lagrangian formulation, the
constraints are added to the objective such that only constraint violations are penal-
ized. This is done by introducing the following indicator function [69]:

𝐼𝑔𝑖 =

{︂
1, if 𝑔𝑖(𝑥) ≥ 0 ∨ 𝜆𝑖 > 0
0, if 𝑔𝑖(𝑥) < 0 ∧ 𝜆𝑖 = 0.

(3.102)

The indicator function makes sure that constraint penalty 𝑔𝑖(𝑥)2 pushes the solution
to the boundary 𝑔𝑖(𝑥) = 0, if the constraint is active. If the constraint is not active,
the indicator function sets the introduced penalty to 0. Using the indicator function,
the augmented objective then becomes:

ℒ𝐴(𝑥, 𝜆, 𝜇, 𝜅, 𝜈) = 𝐽(𝑥) +
𝜇

2

∑︁
𝑖

𝐼𝑔𝑖𝑔𝑖(𝑥)
2 +

∑︁
𝑖

𝜆𝑖𝑔𝑖(𝑥) +
𝜈

2

∑︁
𝑗

ℎ2𝑗(𝑥) +
∑︁
𝑗

𝜅𝑗ℎ𝑗(𝑥).

(3.103)

With the Augmented Lagrangian dual updates:

𝜆𝑖,𝑘+1 = max(0, 𝜆𝑖,𝑘 + 𝜇𝑘𝑔𝑖(𝑥
*
𝑘)) (3.104)

𝜅𝑗,𝑘+1 = 𝜅𝑗,𝑘 + 𝜈𝑘ℎ𝑗(𝑥
*
𝑘). (3.105)

Taking the 𝑚𝑎𝑥(·, ·) makes sure that the Lagrangian multiplier still fulfills 𝜆𝑖 ≥ 0 in
the next step. Converting the described method into an algorithmic framework leads
to algorithm 2.
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Algorithm 2 Augmented Lagrangian Method
1: procedure AugmentedLagrangian(𝑥0, 𝜌𝜇, 𝜌𝜈 , 𝜇0, 𝜈0, Θ, 𝜖)

2: Given: Initial guess 𝑥0; penalty weight update parameters 𝜌𝜇, 𝜌𝜈 > 1; initial

penalty weights 𝜇0, 𝜈0; convergence tolerances Θ, 𝜖

3: 𝜆0 ← 0, 𝜅0 ← 0 ◁ initiate Lagrangian multiplier

4: 𝑘 ← 0

5: while True do

6: 𝑥𝑘+1 ← minimize ℒ𝐴(𝑥𝑘, 𝜆𝑘, 𝜇𝑘, 𝜅𝑘, 𝜈𝑘) ◁ solve sub-problem

7: if |∆𝑥| < Θ and 𝑔𝑖(𝑥𝑘) < 𝜖 and |ℎ𝑗(𝑥𝑘)| < 𝜖 then

8: return 𝑥𝑘+1 ◁ return solution when converged

9: 𝜆𝑖,𝑘+1 ← max(0, 𝜆𝑖,𝑘 + 𝜇𝑘𝑔𝑖(𝑥𝑘+1)), ∀𝑖 ◁ update Lagrangian multiplier 𝜆

10: 𝜅𝑗,𝑘+1 = 𝜅𝑗,𝑘 + 𝜈𝑘ℎ𝑗(𝑥𝑘+1), ∀𝑗 ◁ update Lagrangian multiplier 𝜅

11: 𝜇𝑘+1 ← 𝜌𝜇𝜇𝑘, 𝜈𝑘+1 ← 𝜌𝜈𝜈𝑘 ◁ update penalty weights

12: 𝑘 = 𝑘 + 1

3.5 KOMO Motion Planning Problem in Python

Throughout the following section the implementation of problem (3.6) - (3.11) using
the KOMO-Framework is described. A convenient way to incorporate the KOMO-
Framework in Python projects is using the provided bindings12. These allow the use
of a large number of native methods of the C++ implementation. As well as for
SCvx, in KOMO only fixed final time problems are considered.

Kinematic Model:

The implementation of the full multirotor model in the KOMO-framework is done in
two steps. In the first step, a geometric representation of the multirotor is defined.
This includes specifying the position of each frame, such as motors and arms, relative
to either the world-coordinate system or its parent frame. In addition, it is defined
for each frame how it can move relative to its parent, i.e., what degrees of freedom
the frame has. In the implemented model, all frames were rigidly connected and
therefore, the combined kinematic model has 6 degrees of freedom. For collisions, a
sphere with the same radius chosen as for the SCvx-framework was used as a model
approximation. The kinematic model of the multirotor for four rotors without the
collision sphere is shown in figure 3-6 on the left-hand side. This implementation was
based on a model provided by Marc Toussaint13 which was extended to rotor numbers

12https://github.com/MarcToussaint/rai-python
13Head Learning and Intelligent Systems Laboratory at TU-Berlin and examiner of this thesis
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𝑛𝑚 ∈ {2, 3, 4, 6, 8}.

Figure 3-6: Multirotor model with 4 rotors with (right) and without (left) thrust
implemented in KOMO-framework.

In the second step, the interaction between the multirotor and its environment caused
by the thrust of the rotors is modeled. The KOMO-framework provides methods to
add force exchanges between frames which are used to model the force acting between
the motor frame and the world frame. Note that the torque introduced by the rotor
drag is also included in this step. Adding a force exchange adds a new decision variable
to the optimization problem. Therefore for each motor force, a decision variable is
added representing the inputs that should be optimized (figure 3-6 right-hand side).

Only a spherical approximation with the radius 𝑟𝑆 = 1−4 used for collision checking
is implemented for the double integrator model. There is no need for force exchanges
in this case since the control input for the double integrator model is its acceleration.

Initial Guess:

The initial guess for KOMO was generated in the same fashion as the initial guess
for SCvx described in section 3.3.

Constraints and Objective:

The constraints of problem (3.6)-(3.11) are defined in KOMO using features. As
already mentioned, features are the interface between configurations and numerics
and can define any differentiable mapping 𝜑𝑘. They can represent quantities such
as distances between configurations and can approximate the 𝑘-th derivative when
using order 𝑘. For example, a feature representing the position of a frame can rep-
resent its velocity by setting the order of the feature to 𝑘 = 1. Initial and final
constraints, as well as the box-constraints representing minimal and maximal states,
are implemented by using features on positions/orientations and their derivatives.
The corresponding target values (e.g., 𝑝𝑇 , 𝑣𝑚𝑎𝑥) are incorporated to specify the goal
of the equality constraint or the limit of the inequality constraint. For the input
constraints, the features are implemented using the newly introduced optimization
variables. In contrast to the SCvx-algorithm, the initial configuration is not part of
the decision variables. The collision constraints in KOMO are handled internally and
use a similar formulation as already described in section 3.3. The collision feature
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maps a configuration to a real number indicating a collision if positive. Again the
signed distances are calculated, with the Jacobian of the distances depending on the
shape of the involved frames. The linear dynamics of the double integrator system are
implicitly enforced by the box-constraints on the accelerations. For the full model,
KOMO provides a convenient way to formulate the dynamic constraints by making
use of the Newton-Euler equations (2.1), which were described in section 2.1.2 ex-
pressed in the inertial frame. Therefore the states and inputs are constrained to be
consistent with the following:

𝑓𝑇,𝐼 = �̇�𝐼𝑚− 𝑔, (3.106)

𝜏𝐼 =
𝑑

𝑑𝑡
(J𝐼𝜔𝐼). (3.107)

Since the equation is now expressed in the inertial frame, the fictitious forces 𝜔× J𝜔
vanish and the inertia matrix J𝐼 becomes time-dependent. The accelerations �̇�𝐼 , �̇�𝐼

are approximated using the finite differences of the configurations at 𝑘, 𝑘−1 and 𝑘−2.
For example, for the linear acceleration, this leads to the following approximation and
implicated integration scheme

�̇�𝐼,𝑘 ≈
𝑣𝐼,𝑘 − 𝑣𝐼,𝑘−1

∆𝑡
→ 𝑣𝐼,𝑘 = 𝑣𝐼,𝑘−1 +∆𝑡�̇�𝐼,𝑘. (3.108)

In contrast to SCvx, this corresponds to an implicit Euler integration scheme, since
�̇�𝐼,𝑘 is used to calculate 𝑣𝐼,𝑘. The features used to implement the motion planning
problem for the full model and for the double integrator implementation are listed in
appendix A.
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Chapter 4

Results

Three specific scenarios were chosen to evaluate the performance of the KOMO-
framework compared to the SCvx implementation. The selected scenarios include
geometrically complex problems and problems requiring highly dynamic solutions.
Trajectories for each scenario were obtained with different motor numbers and each
experiment was repeated 15 times to account for the variance in the computation time
and evaluate robustness regarding different initial guesses. All results were obtained
on a workstation with 32 GB RAM and an AMD Ryzen 9 3900x 12-core processor.

4.1 Scenario Descriptions

In all scenarios, the model parameters of the full model (arm length of the multirotor
𝑙, mass 𝑚 and torque constant 𝜅) were specified as:

𝑙 = 0.046𝑚 , 𝑚 = 0.034𝑘𝑔 , 𝜅 = 0.006
𝑁𝑚

𝑁
. (4.1)

Multirotors with motor numbers 𝑛𝑚 = {4, 6, 8} were considered and three different
scenarios were chosen for evaluation.

1. Scenario 1 considers flying through an environment cluttered with spherical
obstacles using the double integrator model.

2. Scenario 2 considers flying through an environment cluttered with spherical
obstacles using the full nonlinear dynamics (shown in figure 4-1).
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(a) Start

→

(b) Goal

Figure 4-1: Start and goal scenario 2.

3. Scenario 3 considers recovering the multirotor from an upside-down position
(shown in figure 4-2).

(a) Start

→

(b) Goal

Figure 4-2: Start and goal scenario 3.

In the first two scenarios, the initial and the final states are set such that the optimal
trajectory circumvents six spherical obstacles. The double integrator model was used
in scenario one, while the full dynamics were considered in scenario two. The time
horizon was chosen such that the optimal input sequence is not in saturation, i.e., the
input does not reach the constraints. This shifts the focus to the obstacle avoidance
problem. The second scenario does not include obstacles but is dynamically chal-
lenging. Here the multirotor starts nearly upside down and has to recover from that
position. The time horizon and the thrust-to-weight ratio were chosen such that the
optimal inputs are in saturation. Two different thrust-to-weight ratios were chosen to
solve two differently hard-constrained problems. The scenario parameters are stated
in table 4.1.

Checking for Feasibility:

To check if a computed solution is feasible, it has to be evaluated if the implemented
constraints are respected. The box-constraints on states and inputs can easily be
verified by simply applying them. Using FCL ensures that the trajectory is collision-
free at every time step. The optimal input series is propagated through the nonlinear
dynamics using the corresponding integration scheme to determine if the solution is
dynamically feasible. At each 𝑘 ∈ {0, ..., 𝑁 − 1} time step the propagated state 𝑥𝑘+1
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and the state of the computed solution 𝑥*𝑘+1 are compared. A solution is considered
feasible if the difference between these two falls under a user-defined threshold.

Complexity of KOMO:

Since KOMO is using a configuration space representation of the trajectory only im-
plicitly considering higher order derivatives without introducing them as optimization
variables, the dimensionality of the optimization problem is drastically reduced with
respect to SCvx, as can be seen in table 4.1. Note that KOMO is not introducing
more constraints compared to SCvx. The number of optimization variables influences
the run time to a high degree. Still, it is not the only decisive factor since the dimen-
sionality only influences the computation time of the inner loop of the augmented
Lagrangian method in KOMO and the inner loops of Gurobi. On the other hand, the
outer loops are influenced by the problem structure, its conditioning and its convex-
ity. Still, a smaller number of optimization variables can significantly influence the
speed of the inner loops leading to a potentially lower computation time for KOMO.
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Scenario 1 Scenario 2 Scenario 3

Obstacles

𝑟𝑂 = 0.4
𝑝1 = (0,−0.7, 1) , 𝑝2 = (1, 0, 1)
𝑝3 = (−1, 0, 1) , 𝑝4 = (0, 0, 1.7)
𝑝5 = (0, 0, 0.3) , 𝑝6 = (0, 0.7, 1)

-

Initial State (𝑥0)
𝑝0 = (0.1,−1.3, 1)
𝑞0 = (1, 0, 0, 0)
𝑣0, 𝜔0 = (0, 0, 0)

𝑝0 = (0.1,−1.3, 1)
𝑣0 = (0, 0, 0)

𝑝0 = (0, 0, 1)
𝑞0 = (0.04, 0,−0.9, 0)
(175° rotation 𝑦-axis)
𝑣0, 𝜔0 = (0, 0, 0)

Final State (𝑥𝑇 )
𝑝𝑇 = (−0.1, 1.3, 1)
𝑞𝑇 = (1, 0, 0, 0)
𝑣𝑇 , 𝜔𝑇 = (0, 0, 0)

𝑝𝑇 = (−0.1, 1.3, 1)
𝑣𝑇 = (0, 0, 0)

𝑝𝑇 = (0, 0.15, 1)
𝑞𝑇 = (1, 0, 0, 0)
𝑣𝑇 , 𝜔𝑇 = (0, 0, 0)

Final Time
(𝑇 ) [s] 2.7 2.7 1.8

#Time Steps
(𝑁) 30 30 100

Noise Factor (𝛼𝑛) 0.05 0.05 0.01
Thrust to
Weight Ratio
(𝑟𝑡2𝑤)

1.4 1.4 {1.4 , 1.5}

# Motors (𝑛𝑚) - {4 , 6, 8} {4 , 6, 8}

# of Decision
Variables SCvx 730

𝑛𝑚 = 4 : 1187
𝑛𝑚 = 6 : 1247
𝑛𝑚 = 8 : 1307

𝑛𝑚 = 4 : 3417
𝑛𝑚 = 6 : 3617
𝑛𝑚 = 8 : 3817

# of Decision
Variables
KOMO

203
𝑛𝑚 = 4 : 330
𝑛𝑚 = 6 : 390
𝑛𝑚 = 8 : 450

𝑛𝑚 = 4 : 1100
𝑛𝑚 = 6 : 1300
𝑛𝑚 = 8 : 1500

Table 4.1: Scenario parameters.
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4.2 Experiments

In the following section, the results of the conducted experiments are presented, where
all plots only contain trials considered feasible.

4.2.1 Computation Time

Figure 4-3 and 4-4 summarize the computation time for all three scenarios. Since
the SCvx-implementation is done in Python, a direct run time comparison would not
be fair. Nevertheless, the convex solver (Gurobi) used in every iteration to obtain
the solution to the convex sub-problem is written in C and run time optimized.
Therefore the time accumulated over all iterations used by Gurobi can be seen as a
lower bound on time taken by an optimized SCvx version. The time it took SCvx to
find a solution is split into three parts: The accumulated time spent in the algorithm
itself, the accumulated time spent in the CVXPY interface and the accumulated
time used by Gurobi to solve the convex sub-problem. The colored bars represent the
average time over all trials, while the black lines indicate the standard deviation of the
computation time. In figure 4-3a the computation time for scenario 1 is shown. The
time it took KOMO to find a solution is substantially smaller than the time needed
by SCvx and the accumulated time of Gurobi is again substantially smaller than
the computation time of KOMO. For scenario 2 (figure 4-3b), the difference between
the computation time of KOMO and the lower bound provided by Gurobi becomes
significantly smaller. Using a multirotor model with 𝑛𝑚 = 8, the computation time
becomes even close to equal. Figure 4-4, on the left-hand side, shows the time needed
to solve scenario 3 with a tight bound on the inputs (𝑟𝑡2𝑤 = 1.4). Here KOMO takes
comparatively longer to find a feasible solution, even nearly closing the gap to the
Python implementation of SCvx for 𝑛𝑚 = 8. The computation time for scenario 3
for 𝑟𝑡2𝑤 = 1.5 is shown in figure 4-4 on the right-hand side. In the relaxed version
of scenario 3 for 𝑛𝑚 = 8, the run time of KOMO becomes significantly lower while
staying the same for other motor numbers. The deviation of the computation time
of SCvx for scenarios 1 and 2 is higher than the time deviation of KOMO. This is
reversed in scenario 3, leading to a higher deviation of computation time for KOMO.
In summary, KOMO converges clearly slower than an optimized SCvx version for
scenario 3 and scenario 2 with 𝑛𝑚 = {4, 6}. Whereas for scenario 1 and scenario 2
with 𝑛𝑚 = 8, no clear statement can be made.
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Figure 4-3: Comparison of the computation time of KOMO and SCvx.
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Figure 4-4: Computation time of scenario 3.
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4.2.2 Converged Trajectories

Figures 4-5, 4-6 and 4-7 show the obtained trajectories with the minimal costs over all
trials, where the arrows indicate the z-axis of the multirotor. Note that for scenarios
1 and 2, there are four equally optimal solutions. Passing on the right side over and
under the spheres lying between the initial and the goal position and passing on the
left side over and under the spheres results in the same theoretical cost on the used
input for the double integrator model and the full model. Figures 4-5 and 4-6 show
that KOMO and SCvx both find solutions following trajectories in these group. While
SCvx converges for scenario 2 for all rotor numbers to roughly the same trajectory,
KOMO’s solution differs in the range of the equally optimal solutions. The trajectory
obtained from KOMO is shown in detail in appendix B. The trajectories obtained
for scenario 3 (figure 4-7) differ between both algorithms. Where the trajectory
obtained with KOMO for 𝑛𝑚 = 6, 𝑟𝑡2𝑤 = 1.4 is in detail shown in appendix B.
SCvx converges throughout all different motor numbers and thrust to weight ratios
to similar trajectories, while KOMO finds clearly different solutions for 𝑛𝑚 = 4. Note
that no statement can be made whether one of the algorithms has found the globally
optimal solution or not. In summary, the by KOMO computed trajectories change
more with changing motor numbers when compared to SCvx.
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Figure 4-5: Trajectories with minimal cost over all 15 trials for scenario 1.
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Figure 4-6: Trajectories with minimal cost over all 15 trials for scenario 2.
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Figure 4-7: Trajectories with minimal cost over all 15 trials for scenario 3.
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4.2.3 Distribution of Computed Solutions

In figure 4-8 and 4-9 the distributions of the optimal values for all 15 trials are shown.
For scenario 1 (figure 4-8a), KOMO converges for all feasible trials to solutions with
lower cost than SCvx with a relative cost difference between both algorithms of 2.4 %
and a comparable width of the optimal value distribution. In figure 4-8b the optimal
values of scenario 2 are shown. Here SCvx converges to solutions with lower cost
compared to KOMO with a relative cost difference of less than 1%. The distribution
width of the optimal values is in a similar range except for 𝑛𝑚 = 6, where SCvx
converges to the same solution for all feasible trials. Figure 4-9 shows the optimal
values for scenario 3. KOMO is able to find solutions with up to ca. 2.3 % less cost
compared to SCvx. The maximal cost improvement is achieved for 𝑛𝑚 = 4 equally
for both thrust-to-weight ratios. While SCvx converges in every trial to the same
solution, the optimal values for KOMO are, except for 𝑛𝑚 = 4, more distributed. In
general, the statement can be made that KOMO finds slightly better or equally good
solutions compared to SCvx.
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Figure 4-8: Optimal value distribution.
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Figure 4-9: Optimal value distribution for scenario 3.

4.2.4 Success Rate

The success rates of the conducted experiments are summarized in table 4.2. A trial
is considered feasible if the found solution respects the imposed constraints. For
scenario 1, both algorithms had a success rate of 100%. In scenario 2, the success
rate of KOMO decreases for 𝑛𝑚 = {4, 6} from 100% to 87%, while the success rate
of SCvx decreases for 𝑛𝑚 = 4 from 100% only to 93%. The success rate of KOMO
for scenario 3 drops considerably for all motor numbers. Especially for tight bounds
on the inputs (𝑟𝑡2𝑤 = 1.4) KOMO struggles to reliably find a solution. This effect
becomes less prominent for wider bounds on the inputs (𝑟𝑡2𝑤 = 1.5). To evaluate how
prone the algorithms are to noise on the initial guess, all 3 scenarios (with 𝑟𝑡2𝑤 = 1.4
and 𝑛𝑚 = 4 for scenario 2 and 3) are reconsidered with noise factors (defined in
(3.63)) 𝛼𝑛 = {0.01, 0.05, 0.1}. The resulting success rates are shown in table 4.3.
While both algorithms find a feasible solution for scenario 1 in every trial for smaller
noise factors, KOMO’s success rate drops for 𝛼𝑛 = 0.1 from 100% to 93%. For
scenario 2, the success rate of KOMO exceeds the success rate of SCvx for highly
noisy initial guesses. Here SCvx can find a feasible solution in only 60% of the trials.
For noise factors 𝛼𝑛 = {0.05, 0.01}, the success rate of SCvx is higher than KOMO’s
by 6-7 %. In scenario 3 KOMO again has a considerably lower success rate than
SCvx. In general, highly noisy initial guesses result in lower success rates for SCvx
and KOMO. The only exception is scenario 3 for KOMO, where a higher noise factor
benefits the rate of feasible solutions. KOMO finds a feasible solution for scenario 1,
for a similar number of trials. For scenario 2, KOMO has in comparison to SCvx a
slightly lower success rate, while in scenario 3 KOMO’s success rate drops significantly.
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Success Rate [%] Scenario 1 Scenario 2 Scenario 3
Parameter KOMO SCvx KOMO SCvx KOMO SCvx

𝑛𝑚 = 0,𝑟𝑡2𝑤 = 1.4 100 100 - - - -
𝑛𝑚 = 4,𝑟𝑡2𝑤 = 1.4 - - 87 93 27 100
𝑛𝑚 = 6,𝑟𝑡2𝑤 = 1.4 - - 87 100 60 100
𝑛𝑚 = 8,𝑟𝑡2𝑤 = 1.4 - - 100 100 40 100
𝑛𝑚 = 4,𝑟𝑡2𝑤 = 1.5 - - - - 47 100
𝑛𝑚 = 6,𝑟𝑡2𝑤 = 1.5 - - - - 67 100
𝑛𝑚 = 8,𝑟𝑡2𝑤 = 1.5 - - - - 80 100

Table 4.2: Success rates of KOMO and SCvx for scenario 1, 2 and 3.

Success Rate [%] Scenario 1 Scenario 2 Scenario 3
Parameter KOMO SCvx KOMO SCvx KOMO SCvx
𝛼𝑛 = 0.1 93 100 87 60 67 93
𝛼𝑛 = 0.05 100 100 87 93 67 100
𝛼𝑛 = 0.01 100 100 93 100 27 100

Table 4.3: Success rates of noise tests for scenario 1, 2 and 3.

In summary, KOMO has a similar success rate for scenario 1, a slightly worse success
rate for scenario 2 and really struggles with finding solutions for scenario 3.

4.2.5 Integration Error

To approximate how well the obtained solutions respect the time-continuous dynam-
ics of the used models, the computed input series is again propagated through the
nonlinear dynamics. In contrast to the feasibility check described in section 4.1, the
state at 𝑥𝑘+1 is obtained propagating the constant input 𝑢𝑘 with a reduced step size
(0.2∆𝑡) through the dynamics. An additional difference to the feasibility check is that
an explicit Euler integration scheme is used for both algorithms. Even though KOMO
implicitly enforces an integration scheme, this simplification was made to avoid us-
ing implicit methods, which require solving algebraic equations for the unknown new
state. For linear dynamics, this can easily be done analytically. In contrast, nonlinear
dynamics require numerical methods such as fix-point iterations to obtain the new
state [70]. For the feasibility check, this was not an issue since the new state was
already known and could be used for calculation. A smaller time grid for evalua-
tion instead requires obtaining states at time points not considered during optimiza-
tion. Using an integration scheme that was not used during optimization will lead
to slightly higher errors for KOMO. Still, information about the feasibility regarding
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time-continuous dynamics can be obtained. The maximum over all elements of the
difference between the converged solution 𝑥* and the propagated states is shown in
the figure 4-10 and 4-11. Figure 4-10a presents the integration error for scenario 1.
In scenario 1, the double integrator model is used, where the accelerations of the
point mass are defined as the inputs and KOMO enforces the dynamic constraints
by construction. Therefore, the observed integration error is purely related to the
chosen integration scheme and is not considered in the evaluation. In figure 4-10b
the integration error for scenario 2 is shown. In general KOMO and SCvx have a
comparable integration error with KOMO’s being slightly higher than that of SCvx.
Only for scattered trials KOMO shows significantly higher errors. Figure 4-11 shows
the integration error for scenario 3, where KOMO has for both thrust-to-weight ratios
integration errors at least twice as high as SCvx. The maximal integration error is
up to 52 times as high.
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Figure 4-10: Integration error for scenario 1 and 2.
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Figure 4-11: Integration error for scenario 3.

4.2.6 Preliminary Results for Multirotors with Three Motors

Tests involving multirotors with motor numbers 𝑛𝑚 = {2, 3} were not included in the
comparison of the two algorithms since these problem settings are notoriously difficult
to solve and no scenario was found where KOMO and SCvx were able to solve the
same problem. This could have two reasons. Firstly the behavior of the multirotor
becomes increasingly difficult to control for small motor numbers, including that not
all goal states can be reached from all initial states. This leads to dynamic constraints,
which render the problem such that feasible solutions are more difficult to reach and
an increasing number of dynamically infeasible local minima. The second reason is
related to the initial guess. Since the motion of the multirotor becomes more complex
for lower motor numbers, finding a good initial guess is hard. For example, using
multirotor models with 𝑛𝑚 = 3 requires an ongoing rotation around the 𝑧-axis due to
the torque imbalance caused by the rotor drag of an uneven number of rotors when
moving in the 𝑥, 𝑦, 𝑧 - directions. This is difficult to predict and a linear interpolation
as an initial guess often leads to convergence to infeasible solutions. Nevertheless
KOMO, in contrast to SCvx, was able to find solutions to simple problems including
multirotor models with 𝑛𝑚 = 3. One of the solutions is shown in appendix C.
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4.3 Discussion

In the following section, the obtained experimental results are discussed. To begin
with, it should be mentioned that the algorithmic performance of both SCvx and
KOMO is highly dependent on the choice of the user-defined weights in the objec-
tive function and the parameters of the algorithms. Therefore, even though both
algorithms were extensively tuned for each scenario to achieve peak performance, it
cannot be guaranteed that there is no better parameter combination. In general,
KOMO needs less extensive weight tuning for scenarios involving more geometric
problems, such as scenarios 1 and 2. In contrast, for problems requiring highly dy-
namic solutions SCvx seems to be favorable regarding tuning effort (a subjective
measure).

Since the computation time of KOMO is, in general, higher than the lower bound
on the computation time of SCvx but smaller than the total time, no definitive
statement can be made whether KOMO is faster than SCvx. An exception to this
is scenario 2 with 𝑛𝑀 = 8, where KOMO’s computation time is comparable to the
lower bound of SCvx. This indicates that KOMO has potentially lower run times
for well-conditioned problems, but it is unclear when these occur. Nevertheless, for
scenario 2 with 𝑛𝑚 = {4, 6} and scenario 3 can safely be assumed that a run time
optimized SCvx-version has a shorter computation time. For scenario 1, it is unclear
which algorithm would have the time advantage.

While KOMO is able to find in scenario 1 and 3 solutions with up to 2.4 % less cost
than SCvx, in scenario 2 it finds solutions with under 1 % more cost. This indicates
that KOMO in general finds equally good or better solutions compared to SCvx.
One could argue that decreasing the convergence threshold of SCvx would lead to an
increased computation time and less costly solutions, closing the gap to KOMO in
terms of run time and regarding the obtained cost. This was tested and SCvx tends
to converge to the same solutions even for substantially lower thresholds.

Comparing the success rates indicates that KOMO can find feasible solutions at a
similar rate to SCvx for problems requiring more geometrical reasoning like scenarios 1
and 2. For problems demanding solutions close to the input constraints and, therefore,
highly dynamic problems, KOMO shows a significantly lower success rate than SCvx.
Note that deviations in the success rate of 7 % are caused by just one failing trial.
This emphasizes that the chosen sample size introduces a coarse grid to evaluate the
success rate and conclusions drawn from jumps in the success rate must be treated
with caution. An increasing number of rotors renders the problem in a way that it
is easier to solve for both algorithms. This correlates with the fact that multirotors
with a higher number of rotors are easier to control. The experiments regarding the
influence of noise on the initial guess show that both algorithms are similarly prone
to noise on the initial guess. Except scenario 2, where SCvx finds significantly fewer
solutions with increasing 𝛼𝑛 and scenario 3, where KOMO’s success rate increases
with rising noise values.

In general, the dynamic constraints were violated if a solution was not feasible. How-
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ever, both algorithms are effortlessly able to find solutions respecting the other con-
straints. Therefore the calculated integration error of the obtained solution is, to some
degree, a measure of how difficult the problem was to solve for both algorithms. The
integration errors of KOMO in scenario 2 are generally only slightly higher than the
integration errors of SCvx. Since the integration scheme used to calculate the errors
introduces higher errors for KOMO, both algorithms are assumed to find dynamically
similarly feasible solutions. However, correlating with the observed low success rate,
the integration errors of KOMO for scenario 3 are considerably higher than the er-
rors of SCvx. The magnitude of the integration error for KOMO also indicates that
the threshold for the dynamic constraint violations in the initial feasibility check was
chosen too high. This supports the claim that KOMO is not well suited for highly
dynamic problem settings.
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Chapter 5

Conclusion

Multirotors have become increasingly often used in academia and industry. They are
successfully applied in various fields, e.g., entertainment such as light shows, cooper-
ative construction, inspection of power lines and off-shore wind parks as well as aerial
additive manufacturing. However, since the motion planning problem for multirotors
is high dimensional, search and optimization-based methods tend to be slow. On
the other hand, optimization-based methods scale better with high dimensional state
spaces and can solve motion planning problems fast. k-order Markov optimization is
an optimization-based method that has proven its majority in robotic manipulation.

In this work, k-order Markov optimization was compared with successive convexifi-
cation, an algorithm claimed to be well suited for motion planning problems involv-
ing highly dynamic systems with high dimensional state spaces. Therefore, a SCvx
motion planning framework was implemented and rigorously validated. The frame-
work can handle different dynamic models and arbitrary obstacles. Three multirotor
motion planning scenarios have been formulated using the RAI-framework and the
implemented SCvx-framework. KOMO and SCvx were used to solve different test
scenarios which were geometrically as well as dynamically challenging. The obtained
solutions were analyzed regarding computation time, cost, success rate, and continu-
ous dynamical feasibility. KOMO was able to find solutions with comparable or lower
cost than SCvx while having a slightly lower success rate for more geometrical prob-
lems and an up to 73% lower success rate for dynamically challenging problems. This
leads to the claim that KOMO is well suited for problems requiring more geometri-
cal reasoning. For problems requiring solutions where the control input reaches the
control limits, KOMO struggles to find solutions but can solve dynamically complex
problems that do not hit the input constraints.

To provide a more precise comparison between both methods, the implementation of
SCvx in C++ has to be considered. This would provide clarification for problem types
where it is unclear whether SCvx or KOMO has the time advantage. Also, introduc-
ing a more refined grid for evaluating the success rate using a higher trial number
would reduce imprecision in evaluating the success rate for scenario 2. Introducing
the final time as a decision variable would give the optimizers more freedom when
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converging to a solution. Even though the optimization problem becomes harder to
solve, influencing the step size could lead to higher success rates for highly dynamic
problems for which KOMO struggles the most.
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Appendix A

Explicit Features Used in the
KOMO-Implementation

The features used to implement the motion planning problem for the full model are
listed in table A.2 and the features used for the double integrator implementation are
described in A.1. The first column specifies which constraint is implemented, while
the second column states which feature is used. The "Order" column states the order
of the feature and the time steps on which the constraint is applied are defined in
the "Time Step" column. Finally, the constraint’s type (eq./ineq.) and the specified
targets are shown in the last column. A dash is drawn in the corresponding row to
indicate that a constraint is not enforced explicitly.
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Constraint Feature Order Time
Step

Target/
Type

Initial Constraints:
𝑝𝑘=0 = 𝑝0 - - - -
𝑣𝑘=0 = 𝑣0 Position 1 0 = 𝑣0

Terminal Constraints:
𝑝𝑘=𝑁 = 𝑝𝑇 Position 0 1 = 𝑝𝑇
𝑣𝑘=𝑁 = 𝑣𝑇 Position 1 1 = 𝑣𝑇
Dynamic Constraints:

𝑥𝑘+1 = 𝑓𝑛𝑙(𝑥𝑘+1, 𝑥𝑘, 𝑢𝑘)
Implicitly Enforced by

KOMO-Formulation and
Box-Constraints

- - -

Collision Constraints:
𝑆𝑘 ∩𝑂𝑖 = ∅,
∀𝑖 ∈ {1, ..., 𝑛𝑜𝑏𝑠} Signed Distances - [0...1] ≤ 0

State and Input Box-Constraints:
𝑝𝑘 ≤ 𝑝𝑚𝑎𝑥 Position 0 [0...1] ≤ 𝑝𝑚𝑎𝑥

𝑝𝑘 ≥ 𝑝𝑚𝑖𝑛 Position 0 [0...1] ≥ 𝑝𝑚𝑖𝑛

𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 Position 1 [0...1] ≤ 𝑣𝑚𝑎𝑥

𝑣𝑘 ≥ 𝑣𝑚𝑖𝑛 Position 1 [0...1] ≥ 𝑣𝑚𝑖𝑛

𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 Position 2 [0...1] ≤ 𝑢𝑚𝑎𝑥

𝑢𝑘 ≥ 𝑢𝑚𝑖𝑛 Position 2 [0...1] ≥ 𝑢𝑚𝑖𝑛

Objective Feature Order Time Target/
Type

Cost on Inputs:∑︀
𝑘 𝑢

2
𝑘 Position 2 [0...1] sum of

squares

Table A.1: Features used to define the motion planning problem with KOMO for
the double integrator model.
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Constraint Feature Order Time
Step

Target/
Type

Initial Constraints:
𝑝𝑘=0 = 𝑝0 - - - -
𝑣𝑘=0 = 𝑣0 Position 1 0 = 𝑣0
𝑞𝑘=0 = 𝑞0 - - - -
𝜔𝑘=0 = 𝜔0 Orientation 1 0 = 𝜔0

Terminal Constraints:
𝑝𝑘=𝑁 = 𝑝𝑇 Position 0 N = 𝑝𝑇
𝑣𝑘=𝑁 = 𝑣𝑇 Position 1 N = 𝑣𝑇
𝑞𝑘=𝑁 = 𝑞𝑇 Orientation 0 N = 𝑞𝑇
𝜔𝑘=𝑁 = 𝜔𝑇 Orientation 1 N = 𝜔𝑇

Dynamic Constraints:
𝑥𝑘+1 = 𝑓𝑛𝑙(𝑥𝑘+1, 𝑥𝑘, 𝑢𝑘)

(implicitly)
Violations of

Newton-Euler Equations 2 [0...N] = 0

Collision Constraints:
𝑆𝑘 ∩𝑂𝑖 = ∅,
∀𝑖 ∈ {1, ..., 𝑛𝑜𝑏𝑠} Signed Distances 2 [0...N] ≤ 0

State and Input Box-Constraints:
𝑝𝑘 ≤ 𝑝𝑚𝑎𝑥 Position 0 [0...N] ≤ 𝑝𝑚𝑎𝑥

𝑝𝑘 ≥ 𝑝𝑚𝑖𝑛 Position 0 [0...N] ≥ 𝑝𝑚𝑖𝑛

𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 Position 1 [0...N] ≤ 𝑣𝑚𝑎𝑥

𝑣𝑘 ≥ 𝑣𝑚𝑖𝑛 Position 1 [0...N] ≥ 𝑣𝑚𝑖𝑛

𝑞𝑘 ≤ 𝑞𝑚𝑎𝑥 Orientation 0 [0...N] ≤ 𝑞𝑚𝑎𝑥

𝑞𝑘 ≥ 𝑞𝑚𝑖𝑛 Orientation 0 [0...N] ≥ 𝑞𝑚𝑖𝑛

𝜔𝑘 ≤ 𝜔𝑚𝑎𝑥 Orientation 1 [0...N] ≤ 𝜔𝑚𝑎𝑥

𝜔𝑘 ≥ 𝜔𝑚𝑖𝑛 Orientation 1 [0...N] ≥ 𝜔𝑚𝑖𝑛

𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 Forces Acting - [0...N] ≤ 𝑢𝑚𝑎𝑥

𝑢𝑘 ≥ 𝑢𝑚𝑖𝑛 Forces Acting - [0...N] ≥ 𝑢𝑚𝑖𝑛

Objective Feature Order Time Target/
Type

Cost on Inputs:∑︀
𝑘 𝑢

2
𝑘 Forces Acting - [0...N] sum of

squares

Table A.2: Features used to define the motion planning problem with KOMO for
the full model.
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Appendix B

Obtained Trajectory for Scenario 2
and 3

In figure B-1 the trajectory obtained with KOMO for scenario 3 is shown and in figure
B-2 the trajectory obtained for scenario 2. The converged trajectory is shown at the
top left, the initial state is pictured at the top in the middle and the final state is
shown at the bottom right.
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Figure B-1: Trajectory obtained by KOMO for scenario 3 with 𝑛𝑚 = 8, 𝑟𝑡2𝑤 = 1.4.
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Figure B-2: Trajectory obtained by KOMO for scenario 2 with 𝑛𝑚 = 8, 𝑟𝑡2𝑤 = 1.4.
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Appendix C

Preliminary Results for Multirotors
Using Three Motors

In figure C-1 and figure C-2, the with KOMO obtained forces and states for an
example using a multirotor model with only three motors are shown. The scenario
parameters are shown in table C.1, note that constraints on the final orientation as
well as final and path constraints on the rotational velocity had to be removed because
of the rotation around the 𝑧-axis necessary to reach the goal position.
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Figure C-1: Obtained inputs for tests including Multirotors with 𝑛𝑚 = 3.
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Underactuated
Multirotors

Obstacles -

Initial State (𝑥0)
𝑝0 = (0, 0, 1)
𝑞0 = (1, 0, 0, 0)
𝑣0, 𝜔0 = (0, 0, 0)

Final State (𝑥𝑇 )
𝑝𝑇 = (0, 1, 1)
𝑣𝑇 = (0, 0, 0)
𝑞𝑇 , 𝜔𝑇 = −

Final Time (𝑇 ) [s] 2.7
#Time Steps (𝑁) 100
Noise Factor (𝛼𝑛) 0.01
Thrust to Weight Ratio (𝑟𝑡2𝑤) 1.4
# Motors (𝑛𝑚) 3

Table C.1: Scenario parameters for tests including multirotors with 𝑛𝑚 = 3.
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Figure C-2: Converged state trajectory for tests including multirotors with 𝑛𝑚 = 3.
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