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I. INTRODUCTION

An essential requirements to enhance the autonomy of
a team of robots is being able to reach the goal quickly
while avoiding collisions with obstacles and other robots.
Moreover, the planned motions are required to respect the
robots’ dynamics and actuation limits. For aerial robotic
teams, there are aerodynamic effects that effectively create
an interaction force if two robots are close to each other or
if a robot is close to the ground (“ground effect”) [1]. These
effects are difficult to model, but accurate predictions enable
close-formation flights that are otherwise impossible [2].

Existing kinodynamic motion planners for multi-robot
teams include search-based method [3], sampling-based
methods [4], control-based methods [5], optimization-based
methods [6], and hybrid approaches [7]. The current state-
of-the-art, discontinuity-bounded Conflict-based Search (db-
CBS), is probabilistically complete, asymptotically optimal,
and demonstrates empirically that it can find high-quality
solutions quickly, compared to other approaches. However,
db-CBS does not scale well with the number of robots (at
most 8 robots have been reported) and cannot directly reason
about interaction forces that are unavoidable for aerial robots.

In this paper, we present Discontinuity-Bounded Enhanced
Conflict-Based Search (db-ECBS), a generalization of db-
CBS to address these shortcomings. Algorithmically, we
employ ideas from the multi-agent path finding community
for stronger heuristic guidance [8] and augment the state
space to include interaction-forces during the planning di-
rectly. Empirically, we demonstrate that we can compute
solutions for larger team sizes and compare our method
with existing state-of-the-art algorithms for planning motions
of aerial teams: db-CBS and MAPF/C+POST [9]. Both
existing solvers use conservative collision shapes to avoid
aerodynamic interactions entirely, rather than planning with
them.

II. APPROACH

A. Problem Definition

The multi-robot kinodynamic motion planning problem is
defined as follows. Given the robot’s state space X , action
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space U , dynamics ẋ = f(x,u), start state xs, goal state xg ,
and representation of the environment Wfree, find sequences
of states and actions such that the robots move from their
start state xs to their goal state xf , while obeying the
dynamics and avoid collisions with the environment or each
other. Note that for the multi-robot system the states, actions,
and dynamics are simply stacked for all robots allowing even
heterogeneous robot teams. The interaction-aware planning
requires an additional function that predicts the interaction
forces ψ(i)(·) that depends on the states of nearby robots.
We bound the magnitude of this force to be at most ψmax

and also include the forces in the dynamics f(x,u).

B. Background: db-CBS

db-CBS relies on motion primitives, i.e., sequences of
states and actions that are consistent with the known robot
dynamics. Internally, these primitives are connected with a
(bounded) discontinuity. db-CBS has the following steps:
i) compute single-robot motions with discontinuous jumps
for each robot using db-A* (low-level search); ii) resolve
collisions between individual robots one-by-one (high-level
search); iii) repear discontinuous motions into smooth and
feasible trajectories with optimization; iv) repeat steps i)
to iii) with lower discontinuity bound and more motion
primitives.

db-CBS defines a conflict as C = ⟨i, j,x(i)
k ,x

(j)
k , k⟩ for

a collision between robot i with state x
(i)
k and robot j with

state x
(j)
k identified at time k. The resulting constraint for

robot i is ⟨i,x(i)
k , k⟩, which prevents it to be within a distance

of δ to state x
(i)
k at time k. Similarly, the constraint for robot

j is ⟨j,x(j)
k , k⟩. The notion of a discontinuity δ defines the

constraint as an actual volume (around a point), which is
crucial for efficiency and completeness guarantees.

C. db-ECBS

Db-ECBS builds upon db-CBS by introducing the
bounded suboptimality through the use of a suboptimality
factor ω. This parameter allows db-ECBS to find a subop-
timal solution which is guaranteed to have a cost no more
than ω times the cost of db-CBS. Db-ECBS uses a FOCAL
priority queue F in addition to the standard OPEN queue. F
prioritizes nodes by the lowest value fh, the focal heuristic,
which may be inadmissible. For the low-level search, the
FOCAL queue is used in db-A∗

ω to avoid solutions that result
in many conflicts. Similarly, in the high-level search, another
FOCAL queue considers nodes with low conflict count. This
approach is similar to ECBS [8], however, we operate in
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TABLE I
Wall AND Window EXAMPLES. MEDIAN VALUES OVER 5 TRIALS PER ROW. BOLD ENTRIES ARE THE BEST FOR THE ROW, ⋆ NOT TESTED.

# Instance MAPF/C+POST db-ECBS-C db-ECBS-R
p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s] p tst[s] Jst[s] Jf [s]

1 window2 1.0 1.0 60.7 60.7 1.0 126.2 26.3 26.3 1.0 102.0 26.1 26.1
2 window4 1.0 1.6 147.3 147.3 0.8 353.1 55.6 55.6 1.0 250.7 56.3 56.3
3 window8 1.0 3.2 297.1 297.1 1.0 812.5 114.9 114.9 1.0 508.6 120.6 120.6
4 window10 1.0 4.0 373.0 373.0 0.6 1160.3 141.6 141.6 1.0 798.5 156.4 156.4
5 window12 1.0 4.9 439.8 439.8 0.8 2731.0 172.6 172.6 1.0 801.4 188.7 188.7
6 window16 1.0 7.7 657.4 657.4 0.4 3393.9 244.0 244.0 0.8 2476.4 259.3 259.3
7 wall8 ⋆ ⋆ ⋆ ⋆ 0.2 434.9 72.1 72.1 1.0 132.8 66.4 66.4
8 wall10 ⋆ ⋆ ⋆ ⋆ 0.4 441.7 117.5 117.5 1.0 336.6 99.9 99.9

continuous space, where the heuristic computation is more
difficult.

For interaction-awareness, we augment the state of the
robots to include the interaction force. Moreover, this re-
quires to generalize the definition of motion primitives,
compared to db-CBS, which now include the sequence of
states, actions, and interaction forces. During the search, the
focal heuristics are adapted to also count potential aerody-
namic force violations (ψ(·) ≥ ψmax). For the trajectory
optimization, we plan, similar to db-CBS, on the stacked
dynamics. By including the interaction force ψ(·) as part of
the robot’s state, its value can be easily constrained to stay
within a pre-defined bound.

III. RESULTS

We report success rate (p), computational time until the
first solution is found (tst), cost of the first solution (J st),
and cost of the final solution (J f) (for planners that have
the anytime capability). All planners use a simplified robot
model of a 3D double integrator for flying robots and first-
order unicycle for ground robots.

We compute the interaction forces using a trained deep
neural network that takes the set of relative states of
neighbors as input [2] (db-ECBS-R). We compare with
a conservative method, which assumes to have an el-
lipsoid shape around each robot (db-ECBS-C) and an-
other conservative planner that relies on differential flat-
ness (MAPF/C+POST [9]). The results in Table I can be
summarized as follows: i) planning using the differential
flatness property is significantly faster compared to full
kinodynamic planning; ii) kinodynamic motion planning can
achieve significantly lower cost solutions; iii) the benefit of
planning with the full interaction-aware model is only visible
in very dense settings, but there might have a high impact
on success rate and cost reduction (rows 7 and 8).

We also conduct physical experiments inside a 7 × 4 ×
2.75 m3 room equipped with a motion capture system
with twelve Optitrack cameras. We use Bitcraze Crazyflie
2.1 drones for flying robots and control them using
Crazyswarm2 [10]. For ground robots we use Polulu 3pi+
2040 differential-drive robots. Two scenarios are considered.
We first test the Window example with 8 homogeneous flying
robots. The second scenario has 4 ground robots with vertical
bamboo bars attached and 4 flying robots, see Fig. 1.

Fig. 1. Top: Window example with 8 flying robots. Robots are required
swap their positions by passing through a small window. Red circles show
the starting position, while dark boxes represent the final state. Bottom:
Example with 4 ground robots and 4 flying robots. Ground robots move
forward in a straight line, while the flying robots pass through the moving
bamboo forest.

IV. CONCLUSION

We present db-ECBS, a novel kinodynamic motion plan-
ner for multi-robot teams that can directly reason about
interaction forces that occur for example in aerodynamic
teams that fly in close proximity to each other. Algorith-
mically, we generalize db-CBS to include non-admissible
heuristics that guide the search to avoid conflicts and we
augment the state space during the search and optimization
to include aerodynamic forces. Our approach is probabilisti-
cally complete, asymptotically bounded suboptimal, and un-
like differentially-flatness-based planners can directly reason
about actuation constraints. Empirically, we demonstrate that
db-ECBS can produce trajectories that are less than half the
cost of existing planners and that the interaction-awareness
is in particular important for very dense scenarios.

Future work should look at improving the scalability to
larger robot teams as well as the scalability to higher-
dimensional state- and action spaces.
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