
Learning-Based Relative State Estimation
for Ultralow-Power Multirotor Teams

Thesis in partial fulfillment of the requirements for the degree
Master of Science (M.Sc.)

in the course of studies
ICT Innovation (Embedded Systems)

submitted by
Keerthana P Laxmish

Matriculation number : 478811

October 26, 2023

Technische Universität Berlin
Faculty IV - Institute of Computer Engineering and Microelectronics

Institute of Computer Engineering and Microelectronics
Intelligent Multi-Robot Coordination Lab

Declaration

Statement of authorship

I hereby declare that the thesis submitted is my own, unaided work, completed
without any unpermitted external help. Only the sources and resources listed
were used.

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig
sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der
aufgefuhrten Quellen und Hilfsmittel angefertigt habe.

Berlin, October 26, 2023

Acknowledgements

I would like to express my gratitude to Akmaral Moldagalieva and Pia Hanfeld
for their excellent mentoring and unwavering support through the thesis journey.
The patience and encouragement shown by them was instrumental in shaping the
thesis. I would also like to thank the entire team at the IMRC Lab, TU Berlin for
providing a positive environment, for both learning and fun. My journey at the
IMRC Lab has been one of not only academic development but also significant
personal growth, thanks to the welcoming atmosphere at the lab and the diverse
conversations during breaks. A special thank you to Ilaria Cicchetti-Nilsson for
being a constant source of motivation and incredible moral support throughout
my thesis. Final words of gratitude go to Shri, for being my pillar of strength,
through thick and thin.

Learning-Based Relative State Estimation
for Ultralow-Power Multirotor Teams

Abstract : Multirotor teams have found applications in various fields due to their
efficiency, versatility, and autonomous behavior. A critical aspect of achieving
autonomy in such teams is the ability to perform relative localization between
team members without relying on external positioning systems. Deep neural net-
works that learn from monocular camera images have shown success in achieving
this. However, the challenge lies in deploying these memory and computation-
intensive models onboard ultra low-power multirotors. In this work, a vision-
based deep neural network that predicts the relative positions of neighboring
robots using grayscale images is quantized and optimized. Open source dataset
of close-proximity images and software tools are used to automate the end-to-end
deployment on a resource constrained multi-core system-on-chip. Four variants
of the model with differing input image resolutions are deployed and their perfor-
mance in terms of prediction quality and inference rate is analyzed. The evalua-
tions indicate that all four minimized variants maintained their performance close
to that of the unconstrained model. The models with lowest input resolutions
exhibit approximately a 36% higher error in relative localization compared to the
models with higher input resolutions. However, using lower input resolutions en-
ables a roughly 60 − 70% increase in the inference rate. To determine the optimal
choice of input image resolution, it is crucial to strike the right balance between
the two factors based on the application.

Zusammenfassung : Multirotor-Teams finden aufgrund ihrer Effizienz, Vielsei-
tigkeit und ihres autonomen Verhaltens in verschiedenen Bereichen Anwendung.
Ein entscheidender Aspekt für die Autonomie solcher Teams ist die Fähigkeit, die
Position benachbarter Multirotoren im Team zu lokalisieren, ohne sich auf externe
Positionierungssysteme verlassen zu müssen. Tiefe neuronale Netze konnten in
der Vergangenheit bereits erfolgreich eingesetzt werden, um die relative Positi-
on von benachbarten Multirotoren mit Hilfe von Kamerabildern zu bestimmten.
Die Herausforderung besteht jedoch darin, diese speicher- und rechenintensiven
Modelle an Board eines Multirotors mit sehr geringem Stromverbrauch einzuset-
zen. Diese Arbeit befasst sich mit der Quantisierung und der Inbetriebnahme
eines neuronalen Netzes, dass die Position von benachbarten Robotern anhand
von schwarz-weiß Bildern vorhersagt. Das Ziel ist es, die Berechnung an Board
in Echtzeit durchzuführen. Open-Source-Datensätze von Nahaufnahmen und
Software-Tools werden verwendet, um die End-to-End-Bereitstellung auf einem
ressourcenbeschränkten Multi-Core-System-on-Chip zu automatisieren. Es wur-
den vier Varianten des Modells mit unterschiedlichen Auflösungen des Eingangs-
bildes eingesetzt, und ihre Leistung in Bezug auf die Vorhersagequalität und
die Inferenzrate wird analysiert. Die Auswertungen zeigen, dass alle vier mini-
mierten Varianten ihre Leistung nahe an der des ungebundenen Modells halten.
Die Modelle mit der niedrigsten Eingabeauflösung weisen im Vergleich zu den
Modellen mit der höchsten Eingabeauflösung einen um etwa 36% höheren relati-
ven Lokalisierungsfehler auf. Die Verwendung niedrigerer Eingangsauflösungen
ermöglicht jedoch eine Steigerung der Inferenzrate um etwa 60 − 70%. Um die
optimale Wahl der Eingangsbildauflösung zu bestimmen, ist es entscheidend, je
nach Anwendung das richtige Gleichgewicht zwischen den beiden Faktoren zu
finden.

First Thesis Examiner : Asst. Prof. Dr. Wolfgang Hönig
Title: Head of Intelligent Multi-Robot Coordination Lab

Second Thesis Examiner : Prof. Dr. Oliver Brock
Title: Head of Robotics and Biology Laboratory

Thesis Supervisors :
Akmaral Moldagalieva, PhD student
Pia Hanfeld, PhD student

Contents

List of Figures ii

List of Tables 1

1 Introduction 2

2 Background 4
2.1 Relative localization of UAVs . 4

2.2 Machine Learning and Neural Networks 7

2.3 Low-power Implementation of Deep Neural Networks 10

2.3.1 Quantization . 12

2.3.2 Ultralow-power (ULP) hardware architectures 13

2.4 NEural Minimization for pytOrch (NEMO) 15

2.5 Deployment ORiented to memorY (DORY) 18

2.6 Parallel ULP Neural Network library (PULP-NN) 20

2.7 UAVs and Multirotors . 21

3 Approach 23
3.1 Implementation Workflow . 23

3.2 DNN model architecture . 26

3.3 Dataset and Annotations . 28

3.4 Training and Validation of the Model 30

3.4.1 Loss function . 30

3.4.2 Transfer Learning with real-world Images 31

3.5 Quantization of the Model . 31

3.6 Testing . 35

3.7 Deploying the Quantized Model . 37

3.7.1 DORY . 37

3.7.2 Memory Management and Checksum Tests 40

3.8 Camera Calibration . 41

3.9 Develop Application C Code . 42

4 Results 44
4.1 Comparison of the FP model with the ID model 45

Contents

4.2 On board inference on a robotic platform 48

4.2.1 Setup of Crazyflie 2.1 and AI deck 1.1 48

4.2.2 Experimental Setup . 49

4.2.3 Onboard inference of 100 recorded real-world images . . . 50

4.2.4 Inference speed with hardware configuration 55

4.2.5 Prediction quality with quantization 56

4.2.6 Prediction quality with variation in the input resolution . . 57

4.3 Discussion . 59

5 Conclusion 61

A Stagewise quantization performance evaluation 63

B Additional GAP8 performance metrics of onboard inference 65

C ONNX representation 67
C.1 Full ONNX representation of the model with input 320x320 images 67

Bibliography 71

i

List of Figures

2.1 A 2-layer Neural Network (one hidden layer of four neurons and
one output layer with two neurons), and three inputs [28] 9

2.2 GAP-8 MCU architecture[3] . 14

2.3 NEMO flow for quantization . 18

2.4 Hardware platform . 22

3.1 Implementation Workflow . 24

3.2 Model Architecture . 26

3.3 Example of the network output with reference to the camera image
of size 320 × 320 . 27

3.4 Examples from the dataset [15]. Left: Synthetic image. Right: Real
image from flight experiments. The red dots mark the center pixel
of the visible neighbor retrieved from the ground-truth data 29

3.5 Quantized representation of BN and ReLU functions in terms of
MAC operations . 34

3.6 Examples from the test dataset of 320 × 320 images. Left: model
predictions on synthetic image. Right: model predictions on real
image. 36

3.7 The pipeline of execution in the DORY C code. The data trans-
fers are done parallely to the computation of the previous copied
data. This is possible as the DMA calls are asynchronous and non-
blocking. One call copies the weights and input activation of the
next tile into L1 memory while the kernel is executed on the current
tile, and the other copies the output back on the L2 memory[3] . . 38

3.8 Checksum tests for the model onboard GAP8 41

4.1 Prediction errors for center pixel of visible neighbor between the
FP and ID models on 500 synthetic test dataset 46

4.2 Prediction errors for distance to visible neighbor between the FP
and ID models on 500 synthetic images test dataset 46

4.3 Prediction errors for center pixel of visible neighbor between the
FP and ID models on 97 real test dataset 47

4.4 Prediction errors for distance to visible neighbor between the FP
and ID models on 97 real images test dataset 47

ii

List of Figures

4.5 Crazyflie 2.1 with mounted AI deck 1.1 for experiments 48

4.7 Sample from the images collected with CF1. Top Left : 320 × 320,
Top Right : 224 × 224, Bottom Left : 160 × 160, Bottom Right :
160 × 96 . 50

4.8 Prediction Errors between FP and GAP8 for Left : 320 × 320 and
Right : 224 × 224 . 52

4.9 Prediction Errors between FP and GAP8 for Left : 160 × 160 and
Right : 160 × 96 . 52

4.10 Prediction Errors between FP and GAP8 for 320 × 320 (Left) and
224 × 224 (Right) . 53

4.11 Prediction Errors between FP and GAP8 for 160 × 160 (Left) and
160 × 96 (Right) . 53

4.12 Left: Predictions close to the actual center of CF2 and consistent
predictions between the three models with 0.4cm error in distance
prediction. Right: Predictions on the propeller of CF2, slightly off-
set from center but consistent predictions between the three models.
Higher error of 1.5cm in distance prediction (Image size = 320 × 320) 54

4.13 Left: False predictions of ID and GAP8, center predicted to be on
the CF1 propeller visible in the image. Right: False predictions on
the surface close to the propeller of CF2, but consistent predictions
between the three models. Error of 0.2cm in distance prediction
(Image size = 320 × 320) . 54

4.14 Variation in inference speed with respect to change in active cores 56

4.15 Euclidean Distance error in the 3D relative positions estimated for
100 images . 57

4.16 Euclidean Distance error in the 3D relative positions estimated from
97 images . 58

A.1 2D position (x-axis) error in image across different stages of quan-
tization for 97 real images dataset 63

A.2 2D position (y-axis) error in image across different stages of quan-
tization for 97 real images dataset 64

A.3 Distance error across different stages of quantization for 97 real
images dataset . 64

C.1 Full ONNX representation of the model with input 320 × 320 images 68

C.1 Full ONNX representation of the model with input 320 × 320 images 69

C.1 Full ONNX representation of the model with input 320 × 320 images 70

iii

List of Tables

3.1 Quantum calculated for the different models 35

4.1 Summary of the model characteristics for one frame inference . . . 45

4.2 Single frame inference time (in ms) vs Cores for different resolutions 55

4.3 Euclidean Distance error in the 3D relative positions estimated from
100 images (lowest is best) . 57

4.4 Euclidean Distance error in the 3D relative positions estimated from
97 real images (lowest is best) . 59

4.5 Model performance with different input resolutions 59

B.1 Single frame inference time (in ms) vs Cores for different resolutions 65

B.2 Application Performance [Mcycles] vs Cores for different resolutions 65

1

1 Introduction

Unmanned Aerial Vehicles (UAVs) are aerial vehicles that do not carry a human
operator. UAVs can be controlled either autonomously by an onboard computing
system or by a remote ground-based system. Due to their size and agility, they can
be used in various applications where human intervention is either impossible or
hazardous. UAVs have found applications in fields such as agriculture (for crop
monitoring), search and rescue (providing assistance in hazardous scenarios),
mapping (for land surveying and geographic information systems (GIS)), and
delivery and logistics, among others.

With the revolutions in the electronic device industry enabling the integration of
sensors, actuators, and microcontrollers on miniaturized battery-powered devices,
micro UAVs (referred to as MAVs) have garnered interest from both public and
private research laboratories. MAVs are specialized for tasks that require close-
range operation or navigation in narrow spaces that are difficult for larger UAVs
to access. A swarm of such MAVs can perform tasks that would be challenging
for an individual or a centralized control system. To interact with other MAVs
in the vicinity and perform cooperative tasks autonomously without collisions
or interference, the MAVs must be capable of localization, i.e., they should have
information about their own state as well as the states of their neighbors.

Localization techniques using Global Navigation Satellite System (GNSS) [18] or
Ultra-Wide Band (UWB) communication [13] have been proposed. However these
methods may suffer from latency and high power consumption due to the remote
communication, require an external system and are not scalable to swarms. For
swarms in GPS-denied environments, localization methods have to be real-time
and onboard the MAVs. Moreover these methods must adhere to the strict power
and computation constraints of the devices. In recent times deep neural networks
have been proved to show good performance for vision-based tasks. Therefore,

2

this thesis focuses on implementing a vision-based learning method for relative
localization on an open-source robotic platform and conducting a study on the
real-time onboard performance.

The scientific contributions in the thesis are listed below:

1. Quantization of a deep neural network that performs multi-robot relative
localization.

2. Deploying the quantized model on a robotic platform for real-time inference.

3. Experimental evaluation and comparative analysis of the prediction quality
and achievable inference speed based on different input resolutions.

The structure of the thesis is as follows. Chapter 2 introduces relative localization
for autonomous behavior of multirotor teams. A literature review on the different
methods used, the hardware architectures of these devices and end-to-end deploy-
ment of learning based state estimation methods are detailed. A short background
of the chosen deployment flow and open source platforms is also discussed. Chap-
ter 3 describes the details about the implementation of a vision-based deep neural
network model and its quantization to an integer representation. The deployment
of the quantized model onto the chosen robotic platform is discussed. Chapter
4 presents the experiments performed and the results of a comparative analysis.
Chapter 5 summarizes the work done in the thesis and outlines future work in
the field.

3

2 Background

The following section introduces the relative localization methods for autonomous
multirotor teams and the development flow for deploying one such method on-
board an ultralow power processor.

2.1 Relative localization of UAVs

Multiple methods of localization for UAVs have been explored in research. Some
of them include using motion capture system [30] for indoor aerial UAVs or
Global Positioning System (GPS) providing high accuracy with low computational
complexity. Such external systems may not always be available and they are also
susceptible to jamming and interference in environment with multiple obstacles.
Alternative methods are needed that do not rely on an external system, that are
not limited to indoor operations and can operate in GPS-denied environments.
Relaxing the localization requirement from absolute to relative also provides more
flexibility. Relative localization is the estimation of the MAV’s location in relation
to its environment, another MAV or a reference point.

With the objective of eliminating the need for external systems and making relative
localization possible for real-time operations, different sensor-based approaches
were designed. One such approach was to develop a novel on-board infrared 3D
relative positioning sensor that could provide proximity sensing in 3D space. This
sensor was proven to enable inter-robot spatial co-ordination in indoor environ-
ment without using complex algorithms and relying on indoor illumination [22].
Audio-based localization wherein one chirping MAV (positioning beacon) flies
around the other MAVs enabling the observers to measure their relative position
to the beacon using the recorded audio from their on-board microphone array

4

2.1 Relative localization of UAVs

[1] has also emerged in research. Other methods include relative localization
by using wireless communication between the UAVs in a swarm, to exchange
position and orientation information and fusing the received data with the range
measurements from onboard antennas [13].

The sensor-based approaches mentioned above, while successful, either require
large sensors to be mounted or, even if they utilize smaller communication chips,
suffer from bandwidth limitations and poor performance as the swarms grow
larger or if the environment is cluttered.

An efficient relative localization technique that is scalable for autonomous swarms
of ultralow-powered MAVs is required. Vision sensors are light-weight, versatile
and offer rich information from their data. Moreover they can be easily combined
with the deep learning for different applications. These sensors can be mounted
on the MAVs and hence offer real-time capabilities without need for bandwidth
limited communication mechanisms. Thus vision-based approaches to generate
stable and safe flight paths seem promising both in terms of performance and
scalability [7].

Vision-based relative localization

Vision-based approaches for autonomous UAVs vary based on the size of the
UAVs and their onboard embedded computing ability. UAVs that are larger than
0.5 kg can afford to work with high resolution images and run computationally
intensive algorithms for perception, feature extraction, localization and mapping.
For the pocket size UAVs that generally weigh less than 100 g, the computing
ability is limited to ultralow-power microcontrollers and usage of low resolution
images. Here, a single, light-weight and energy-efficient camera is used to gather
information about the surroundings. Vision-based methods are also scalable for
multi-robot localization, unlike the previously mentioned approaches that depend
on external positioning systems.

Classical approaches like vision-based SLAM (Simultaneous Localization and
Mapping) algorithms have been developed to obtain the pose estimates for the
MAVs using on-board sensor data, which are then used by a PID controller to
perform a flight of computed way points [14] [24]. Visual SLAM algorithms
require significant computational resources for real-time operation, thus straining

5

2 Background

the onboard computing hardware, potentially leading to delays in processing and
control. These methods sometimes employ off-board computations relying on
wireless communication such as WiFi which have constrained communication
channel bandwidth and performance drop in cluttered surroundings.

Visual marker-based relative localization have also been successfully implemented
for collision avoidance. Here, the system consists of a Hummingbird quadcopter
with a small ARM-based onboard computer, and a large red marker with two
built in fish-eye cameras. There is an additional white marker on the red one for
tracking by the 3D motion capture system. Standard computer vision algorithm
and color segmentation to identify the red marker accomplishes the quadcopter
detection task, i.e., the size, position and shape of the red marker from the fish-
eye camera image can be used to compute the 3D position of the UAV relative
to the camera. Once the quadcopters are localized, the information was used to
trigger collision avoidance [23]. These methods however require special hardware
extensions to the already small UAVs which could degrade the performance and
autonomy of the UAV.

With Deep Neural Networks (DNNs) being successfully implemented for com-
puter vision tasks, marker-less learning-based visual localization could potentially
overcome the disadvantages of the previously listed methods. Learning-based
methods have been implemented for multi-robot relative localization [12], au-
tonomous aerial interception [29], visual tracking[19], and prediction of dangerous
aerodynamic effects [15] among others.

The general principle behind the vision-based approach for relative localization
is described in the following section. The translation of the captured 2D camera
image of an object into its real-world 3D position requires modeling of the camera
behavior. First three different frames are defined, image frame I with top left
origin, camera frame C to represent the 3D position of a UAV with respect to the
camera and the robot frame R that is fixed to the UAV (with a vertical x-axis, z-
and y-axes pointing forward and left). The camera intrinsic matrix K defines the

6

2.2 Machine Learning and Neural Networks

translation of a UAV’s position from R into its own camera frame C as below:

K =

⎡⎢⎣ fx 0 cx

0 fy cy

0 0 1

⎤⎥⎦ (2.1)

where fx and fy are the focal lengths and cx and cy are principle points of the
camera. The coordinates represented in C can be transformed into I as follows:

pI = KpC (2.2)

where pI = [u, v, 1] are position vector in image frame with pixel coordinates
(u,v) representing the center of the detected neighbor and pC = [xc, yc, zc] is the
position vector in camera frame.

The 3D relative position of a neighbor with respect to the camera frame can be
obtained by inverting eq. (2.2) [15].

pC =

[︃
zc
(u − cx)

fx
, zc

(v − cy)

fy
, zc

]︃
(2.3)

The camera intrinsic parameters can be estimated by a calibration process with a
checkerboard pattern. Given an image of the neighboring robots and the distance
to the neighbors from the camera, the 3D position of the neighbors in the camera
frame of the observing UAV can be obtained [12].

2.2 Machine Learning and Neural Networks

The past decade has seen the emergence of Artificial Intelligence (AI), a field
that focuses on teaching computers to perform tasks by imitating human behav-
ior. Machine Learning (ML) and its subset Deep Learning (DL) are some of the
methods designed to achieve this objective. Essentially these methods perform
pattern recognition to learn key features of the task at hand, similar to the way
human beings learn problem solving. Given a set of data, Machine Learning as
a field works on developing algorithms that approximate a function to represent
the data using different types of learning methods. One such learning method is

7

2 Background

Supervised Learning where the objective is to infer patterns from a given dataset
and enable the ML model to learn to map the features to their respective targets
so that these algorithms can be reused for making the feature-target predictions
on new unknown data (inference). The dataset is split into training and testing
dataset. The performance of the algorithm can be tuned at every iteration on a
smaller dataset (validation dataset) that is a subset of the training dataset. The per-
formance of the model can be evaluated by testing the prediction ability on a new
unknown dataset (testing dataset). While the validation dataset contains images
in the same domain as the training dataset, the testing dataset contains additional
instances of the original dataset that have not been seen by the training algorithm,
to ensure that the model learns a generalized behavior and is not specific to the
training set. Supervised learning methods are commonly used for tasks such as
regression and classification. Regression is the task of predicting numeric data
whereas classification is the task of predicting the category of data. An example
of the regression task could be to predict the price of a certain item given the data
about trends in the past prices. A popular example for the classification task is
the prediction of the handwritten digits from a given image.

Artificial Neural Network (ANN) is a machine learning algorithm that closely
tries to mimic the behavior of the human brain. In the human brain, information
is processed by the neurons which are connected to each other via a synapse.
In a similar way, ANN contains nodes that pass information to other nodes via
connections which are weighted towards a desirable outcome. ANNs have a layer
of input nodes and a layer of output nodes, connected by some hidden layers in
between[4].

The fundamental building block of ANNs is a perceptron. It mimics the biological
neuron by taking in multiple input values, performing a weighted sum of the
inputs and then passing it to a non-linear function (activation) so that a particular
feature can be extracted from the input. A perceptron with three inputs as shown
in fig. 2.1 can be represented by the following function:

yj = f (
3

∑
i=1

Wij × xi + b) (2.4)

8

2.2 Machine Learning and Neural Networks

Figure 2.1: A 2-layer Neural Network (one hidden layer of four neurons and one output
layer with two neurons), and three inputs [28].

where Wij, xi, yj, and b are the weights, input data, output data and bias respec-
tively, and f is a nonlinear function (i.e., a so called activation function) [28].

The term Deep Learning is a used whenever the networks have more than one
hidden layer and are therefore called Deep Neural Networks (DNNs). DNNs are
widely used in image processing tasks of the computer vision domain. A com-
mon form of DNNs used popularly to process visual data are the Convolutional
Neural Networks (CNNs). Here the input could be pixels of an image with each
subsequent layer responsible for extracting a particular low-level feature such as
a point,lines or edges. Further layers can combine these features to eventually
detect higher-level features such as shapes. Finally, given all the feature informa-
tion the network can predict the likelihood that these high-level features indicate
a particular object or scene.

Convolutional Neural Networks (CNNs) are stuctured in a way that preserves
the spatial context of features, i.e., CNNs use a collection of pixels instead of
single pixel as input to the layers of the network. These collections are trained to
extract specific features from the original image and are known as convolutional
filters. The output of the convolution are called feature maps. A set of such
2D feature maps form a channel. Further convolutional layers then takes the
previous channel as input and perform convolution with another distinct 2D filter
to obtain higher-level feature maps. The results of the convolution at each point
are summed across all the channels. The final result of this computation is the

9

2 Background

output data that represent output feature map(s). CNNs can also comprise of a
fully-connected layer, where all outputs are composed of a weighted sum of all
inputs [9].

The fundamental component of both the convolutional and fully-connected layers
are the multiply-and-accumulate (MAC) operations, which can be easily paral-
lelized. Hence to achieve high performance there has been development of a
number of highly-parallel computing paradigms and their corresponding spe-
cial hardware platforms. These architectures may exploit the temporal proximity
by computation on CPUs and GPUs to perform MACs in parallel or exploit
spatial proximity to build energy-efficient data flow through accelerators. Such
techniques have proven to reduce energy consumption and increase throughput
[28].

PyTorch - a python-based library for deep learning provides all the necessary
packages to implement the machine learning workflow i.e., from dataset prepara-
tion to training and testing of DNNs. The large data structures to store the inputs
and parameters of the network are defined in a class called Tensor. These tensors
can be operated on both CPUs and GPUs to accelerate computation [27].

2.3 Low-power Implementation of Deep Neural Networks

Modern Deep Neural Networks have the ability to extract key features from a
large volume of raw sensor data with high accuracy. However due to their heavy
computation and energy expensive tasks, model inference is usually run on cloud
servers, personal computers, or smartphones. These devices have the specialized
hardware with significant processing power and memory to handle the complex
computations.

But the challenge arises where there is a need to perform inference in real-time and
directly on-board small microcontroller units (MCUs), i.e., edge computing, where
the inference is run independent of the cloud and the internet, and relying only on
the capabilities of the device itself. In such applications the training process still
cannot be implemented on the microcontrollers due handling of large datasets and
long execution times in the training process. But an edge device should be capable

10

2.3 Low-power Implementation of Deep Neural Networks

of running inference on a pre-trained model onboard. For example, in tasks
such as relative localization in MAV applications, safe and accurate autonomous
behavior should be guaranteed despite severe constraints in payload, battery,
and power consumption. Additional benefits of running inferences on-board
the MCUs include reduced latency, better security, and privacy as the data stays
local.

To ensure that the DNN models that are designed to maximize accuracy can
be successfully implemented and deployed on the hardware designed to mini-
mize energy, it is necessary to adopt co-designing approaches. These co-design
approaches work on either reducing precision of the operands or reducing the
number of operations. Some common methods are listed below [28] :

• Quantization involves mapping the weights and activations of the network
from real numbers to integers (R to Z) offering benefits like higher through-
puts, lower memory requirements and compatibility with wider range of
hardware as most microcontrollers in current usage support integer compu-
tation.

• Network Pruning is the process of removing the redundant parameters of
the network and fine-tuning the remaining network to maintain accuracy.
The networks are generally initialized with a higher number of parameters
than required ease of training. Once the model has been trained some of
the parameters may be redundant and can be set to zero. The criteria for
choosing the weights that can be removed vary with application, for example
removing weights that have lower impact on training loss, or weights that are
lower in magnitude or even pruning weights based the energy consumption
of the layers they are associated with.

• Knowledge Distillation involves imitating a teacher-student paradigm. Here
a complex teacher model can be used to learn the properties of the dataset
and then this knowledge can be transferred to a simpler student model.
Thus the student model can have the same level of accuracy of the teacher
while being lean and deployable. However, this method, when applied by
itself, struggles to achieve the level of compression comparable to above
methods without significant accuracy degradation.

11

2 Background

Since the goal of the thesis is to be able to deploy a DNN that performs relative
localization on resource-constrained hardware, both quantization and pruning
methods offer significant computation reductions and memory savings necessary.
While pruning reduces the number of weights and by extension computations
required, keeping the remaining weights still in operation with full precision,
quantization focuses on reducing the bit-width of the weights and computations
in the network. Considering the features of the hardware i.e., the Crazyflie 2.1
1 coupled with the AI deck 1.1 2 , quantization is chosen to be the approach
henceforth (see section 2.7). Quantization allows the implementation of the chosen
DNN by representing the network parameters in pure integers as supported by
the computing unit on board the AI deck. A recent publication comparing the two
methods reveals that quantization tends to perform better than pruning without
the need for changes in hardware architecture. Along with the weights and
activations, pruning requires 1-bit information per weight to indicate whether
this was a pruned weight or not. Additionally, to address the challenge of storing
the network parameters in a compressed format, separate custom hardware units
that handle the compressed parameters have been proposed. Pruning was shown
to be better suited for fine-tuning networks that need to be highly compressed (2
to 3 bit width precision), which are rare in practice [11].

2.3.1 Quantization

Quantization is the process of reducing the precision of the operations and
operands of the DNN thus enabling large models to be concisely stored and
used for inference on devices with constraints mentioned above. Quantization
involves mapping a set of real values to integer values, with the goal of having
minimum error between the reconstructed data from quantization levels and the
original full-precision data.

Formal definition of quantization : A tensor t is said to be quantized if all ele-
ments ti ∈ t can be represented as below:

ti = γt + ϵt · qi (2.5)

1https://www.bitcraze.io/products/crazyflie-2-1/
2https://www.bitcraze.io/products/ai-deck/

12

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/ai-deck/

2.3 Low-power Implementation of Deep Neural Networks

where ϵt is a real valued scalar called quantum, γt is a real valued scalar called
offset, and qi ∈ Zt where Zt is a subset of the Z and is called the quantized space
[5].

There are two methods of quantization, which are briefly explained below [8]:

1. Quantization Aware Training (QAT) : It is the process of quantizing a pre-
trained model and then fine-tuning to recover the degradation of accuracy.
Here, during every forward pass the tensors are mapped to their quanti-
zation levels but the training process uses and updates the full-precision
tensors in the backward pass. The goal is to allow the network to adapt to
the quantized parameters leading to better accuracy, however this process
has a higher computational complexity. There is also a need for a function
to estimate the gradients for the forward propagation.

2. Post-training Quantization (PTQ) : It is the process of quantizing the full-
precision weights and activations of a pre-trained model without any need
for re-training. The model is quantized based on the clipping and scaling
ranges determined by an offline calibration process using a small subset of
training data as calibration data. It is comparatively faster but has higher
degradation of accuracy.

2.3.2 Ultralow-power (ULP) hardware architectures

The rising demands on the processors of the UAVs to handle complex computa-
tions on board while being energy-efficient has led to the development of ultralow-
power hardware architectures. One such paradigm is the Parallel Ultra Low Power
(PULP) that exploits the parallelism in vision-based CNNs without exceeding the
power limitations of the UAVs. PULP [20] is a RISCV-based open-source multi-
core platform designed for applications across different domains that require
onboard processing on edge devices. PULP Platform also provides a PULP Micro-
controller Software Interface Standard (PMSIS) that includes the Board Support
Package (BSP), the Application Programming Interface (API), and the drivers
for running applications on PULP-based MCUs such as the GAP8 processor. To
support the deployment of complex machine learning-based applications on the
small PULP processors, the PULP team provide open source tools like NEural

13

2 Background

Minimization for pytOrch (NEMO), Deployment ORiented to memorY (DORY),
and the Parallel ULP Neural Network library (PULP-NN) among others.

GAP8 : The GAP8 processor is a commercial PULP-based IoT application pro-
cessor3 with nine extended RISC-V cores. It has a fabric controller (FC) core for
control, communications and security functions and 8 compute clusters (CL).

Figure 2.2: GAP-8 MCU architecture[3].

The cores in the CL share a 16 bank L1 memory (64 kB) and a 4 kB instruction
cache. The FC has a 16 kB private L1 memory for data and a 1 kB instruction
cache. Furthermore FC and CL share a 512 kB L2 memory for code and data.
A programmable Direct Memory Access (DMA) controller handles autonomous,
low power, parallel data transfers between L2 and cluster L1. The FC also has
a memory protection unit to allow secure execution. The processor supports a
variety of I/O peripherals like cameras and microphones and provides a number
of standard serial interfaces like UART, I2C, SPI, I2S. GAP8 has been optimized
to enable deployment of CNNs to low-cost, battery operated edge devices that
operate on real-time sensor based data4. GAP8 is supplemented with a software
development kit (GAP8 SDK) which includes a C/C++ compiler, tools for debug-
ging and profiling applications and support for the PULP operating system. The
GAP8 processor has a configurable frequency for the FC and CL to adjust the
power consumption based on the computational workload [6].

Thus the PULP architecture and its associated tools (NEMO, DORY, PULP-NN), in
combination with the GAP8 hardware and its associated SDK provide a complete

3https://greenwaves-technologies.com/gap8_mcu_ai/
4https://greenwaves-technologies.com/wp-content/uploads/2021/04/Product-
Brief-GAP8-V1_9.pdf

14

https://greenwaves-technologies.com/gap8_mcu_ai/
https://greenwaves-technologies.com/wp-content/uploads/2021/04/Product-Brief-GAP8-V1_9.pdf
https://greenwaves-technologies.com/wp-content/uploads/2021/04/Product-Brief-GAP8-V1_9.pdf

2.4 NEural Minimization for pytOrch (NEMO)

setup for applications demanding fast, flexible, energy-efficient, real-time and
learning-based solutions. Hence for the application of enabling autonomy for
small MAVs through vision-based learning methods, the PULP ecosystem seems
to be a good choice to begin with. Alternate deployments flows like GAPflow
by the manufacturers of the GAP8 SoC exist, which comprises of NNTOOL for
converting a NN model into a quantized model (with PTQ) and the AutoTiler for
the memory management between the different hierarchies of memory. However,
the Autotiler5 tool is proprietary unlike the PULP tools which are open-source
and free for development.

2.4 NEural Minimization for pytOrch (NEMO)

NEMO is a framework for layer-wise quantization for DNN models developed
using PyTorch. NEMO stages the quantization process and defines four represen-
tations of the neural network model with the objective of finally having a DNN
model represented purely by integers. NEMO plays a role in training, quantiza-
tion and graph optimization stages. The four representations are explained below
[5]:

1. FullPrecision : This is the regular representation in which all parameters
of the model are float32 values. The model may be composed of linear
operations (convolution and / or full-connected layers), batch normalization
operations and non-linear activation operations. A layer is a sequence of
linear operations that conclude in the first encountered Activation function.

2. FakeQuantized : This is an intermediate representation in which the func-
tions in different layers of the FullPrecision model are replaced by a new
quantization functions. The activations of the network are clipped to a
restricted set of real values. For example, ReLU layers which in the FullPreci-
sion mode clips any input given, to a value ∈ [0,∞), now is replaced with a
clipping function that limits the activations to a value ∈ [0,β). The quantum

5https://greenwaves-technologies.com/which-ai-model-can-run-on-the-
very-edge/

15

https://greenwaves-technologies.com/which-ai-model-can-run-on-the-very-edge/
https://greenwaves-technologies.com/which-ai-model-can-run-on-the-very-edge/

2 Background

ϵ, which is the smallest possible value representable, i.e., the value of 1 bit
in the integer representation, is calculated at this stage as follows:

ϵ = β/(2Q − 1) (2.6)

where Q is the bitwidth, usually chosen depending on the hardware used
in the application.

3. QuantizedDeployable : The next stage involves completing the quantization
such that the model now operates on quantized inputs and outputs quan-
tized tensors. The weights of the linear layers are clipped to values ∈ [α,β)
and the parameters of batch normalization are quantized. The network still
operates on clipped real-valued weights but all the inputs and outputs can
be decomposed into a format as defined by eq. (2.5). At this stage, the
network cannot be further trained, but can be exported to an Open Neural
Network Exchange (ONNX) format which encapsulates the quantization
information. This stage requires the FakeQuantized model and the starting
quantum ϵ calculated with eq. (2.6) as inputs. The current model, is how-
ever, still not deployable on hardwares that do not support floating-point
computations, as the weights and activations are real-valued.

4. IntegerDeployable : The weights and activations of the model are now
converted to an integer-only, bit-accurate representation. This process can
be formalized as below:

t̂ = ϵt · Qt(t) (2.7)

where t̂ is the quantized form of tensor t, Qt is a quantization function
that translates the real numbers to their integer representations and Qt(t)
is called the Integer Image of t [5]. At this stage, the network can ignore
the quantum and work only on the integer images of all parameters, i.e., all
weights and activations are purely integers and computations are decom-
posed to integer multiply-and-accumulate (MAC).

The following paragraphs details some additional information important for the
quantization process:

16

2.4 NEural Minimization for pytOrch (NEMO)

Choice of the value of Q for quantum calculation : NEMO supports mixed-
precision quantization for weights and activations. With the choice of ReLU as
the activation function, the tensors can be effectively implemented as unsigned
integers and hence a full bit-width can be used (e.g. 16 bits, 8 bits). However due
the possibility of non-negative integers, a lower precision is imposed (e.g. 15 bits,
7 bits) is imposed for the weights.

Representation of Input : To operate on an IntegerDeployable model with fully
quantized parameters, it must be ensured that the input is also in the supported
format, i.e., inputs must also have an appropriate quantized representation. For
models that deal with images as inputs, it is fortunate that the inputs are naturally
quantized where the image pixels are inherently represented by a value in the
range of 0 − 255.

Open Neural Network Exchange (ONNX) format6: ONNX is an open-source
standard for representing deep learning models to enable portability of these
models across different frameworks. ONNX helps decompose the model as a
computational graph model with defined nodes and the connection between these
nodes using a standardized set of operators and functions. It also enhances the
hardware deployability of the model for real-time onboard inferences. In this use
case, the PyTorch trained and NEMO quantized model can be exported in the
ONNX format for deployment.

In practice, NEMO as a tool traverses the FullPrecision network and recognizes
the super layers of the NN, i.e., typically the Convolution + Batch Normalization
+ Activation pattern (henceforth referred by Conv-BN-ReLU for simplicity). It
then provides a linear quantization of tensors in these nodes by splitting all
operations into Multiply/Addition/Shift operations for integer represention. As
described by the four stages in listing 2.4, a single tensor is first translated to a
fixed point tensor and then into its equivalent integer representation multiplied
by a quantum. Figure 2.3) shows the decomposition of the different layers into
MAC operations7.

6https://onnx.ai/
7https://pulp-platform.org/docs/pulp_training/ABurrello_Tutorial_part1.p
df

17

https://onnx.ai/
https://pulp-platform.org/docs/pulp_training/ABurrello_Tutorial_part1.pdf
https://pulp-platform.org/docs/pulp_training/ABurrello_Tutorial_part1.pdf

2 Background

Figure 2.3: NEMO flow for quantization.

2.5 Deployment ORiented to memorY (DORY)

Operating with only standard on-chip memories (usually around 1 MB) limits
the number of industrial NNs that can be supported, and the ones that can be
supported too suffer from low accuracy. For example it was shown that with
just 1 MB of on-chip memory, only a standard MobileNet [10] model could be
supported at a poor accuracy of around 50%. But if some off-chip memory (around
64 MB) can be added and there is a mechanism to support data transfers, it
can be seen that many more state-of-the-art NNs can be supported with better
accuracy.

PULP-based chips have fast but very small on-chip memory (512 kB L2 memory,
64 kB L1) and off-chip memories are much bigger but not directly usable and
need additional mechanisms to maintain throughput. Keeping these objectives,
DORY (Deployment ORiented to memorY) - a tool that automatically manages the
memory of PULP-based chips, to efficiently port DNNs on the ULP edge devices

18

2.5 Deployment ORiented to memorY (DORY)

was developed. DORY plays a role in the graph optimization, memory-aware
deployment and optimized DNN primitives stages.

DORY takes in an IntegerDeployable network (with 8-bit precision) as an input and
provides a C compilable and runnable network. This is achieved by the below
steps :

1. Decoding the ONNX output: In step 1, DORY parses the network graph in
the ONNX model and looks for Conv-BN-ReLU occurences (it could also be
Linear-optional BN-Activation). When a Conv/Linear layer is encountered,
a new node is created. Then when the following BN recognized by the MUL-
ADD operations is found, the existing node is updated with the BN node. A
ReLU node is recognised by the MUL-DIV-Clip pattern in the ONNX graph
and results in the update of the previous node. All Cast nodes are ignored.
A MaxPool layer from the ONNX graph leads to the creation of a new node
as it cannot be fused with the previous Conv-BN-ReLU node in the current
implementation of DORY. Each DORY layer uses 8-bit quantized inputs,
outputs, and weights, while the representation of intermediate data is 32-bit
or 64-bit signed integer based on the configuration.

The final information from this steps consists of the Layer Name, Con-
volution/Linear Parameters (filter dimension, stride, padding, etc.), BN
and ReLU parameters, and Input and Output information to link to other
nodes. The output from this stage is a new feed-forward network graph
with only DORY backend compatible nodes, their dimensions, and links
between nodes.

2. Layer by Layer Tiling : This stage deals with looking at each node, com-
puting and allocating the memory required for the computation. Based on
these requirements, the layer analyzer optimizes and generates code to run
the tiling loop to orchestrate layer-wise data movement. Tiling is the act of
copying a chunk (tile) of the input image and the necessary weights from
the larger memory to the smaller memory for computation and storing the
results back to the larger memory. While tiling helps in processing large
networks, the additional movement of data between the different levels of
memories causes some delays in execution. Hence there always has to be

19

2 Background

a trade-off between the size of memory and the execution time to achieve
good performance.

• L3-L2 tiling : The larger 64 MB L3 memory were introduced to support
big NNs. With L3-L2 tiling, storing activations and weights in the L3
off-chip memory instead of the on-chip L2 is enabled. There is a 1D
transfer of tensors from L3 (64 MB) to L2 memory (512 kB) based on the
availability and location of the activations of the previous node. The
tiler tries to keep output activations in L2 as much as possible to avoid
redundant transfers.

• L2-L1 tiling : Almost all networks need tiling from L2 memory (512 kB)
to L1 memory (64 kB). Here, 3D transfers are enabled due to dealing
with smaller memory and the goal is to maximize L1 memory utiliza-
tion. DORY defines this as a Constraint Programming (CP) problem
and uses a solver from the open-source OR-Tools developed by Google
AI12 to meet hardware and geometrical constraint. The data transfer is
sped up by using double buffering i.e., copy of the next tile in parallel
with computation on the current tile. The new computation uses the
available output buffer while the results of the last cycle is stored in L2
and the new set of inputs are loaded into L1 concurrently.

3. Network Parser and Generation of C-Code : With the information about
the layers from the previous stages, DORY generates a network graph with
the right memory buffer sizes at each level of memory. Then every layer is
converted to a function that can be called from within an application code.

Thus DORY reduces the need for manual memory management and NN optimiza-
tions by the programmer and provides a standard framework for deployment of
DNNs on ultralow-power edge devices [3].

2.6 Parallel ULP Neural Network library (PULP-NN)

PULP-based GAP8 processor does not support floating point computation and
hence better and efficient integer computation is needed. PULP-NN is an op-

20

2.7 UAVs and Multirotors

timized backend library that mainly works on exploiting parallelism (since the
processor has 8 cores present) and maximize the data reuse to accelerate com-
putation. It operates as the last two optimization stages. The kernel uses the
HWC (Height-Width-Channel) format for storing elements, and achieves the best
possible data re-use by first storing pixels channel wise, followed by the width
and then height dimension (for spatial locality). PULP-NN library works on the
activations and weights are stored in the L1 memory [3].

2.7 UAVs and Multirotors

The following section describes the hardware characteristics of the UAVs used in
the thesis. UAVs can be classified based on the configuration of the rotors that
enable their propulsion. UAVs with three or more rotors are called multirotors.
They have the ability to perform hovering and precise maneuvers and can be
powered by lithium-ion batteries. Based on their size and applications there
could be an overlap between the previously defined MAVs and multirotors. The
implementation of the DNN for relative localization in the thesis is done on
an small quadrotor platform (multirotor with four rotors) called the Crazyflie
2.1 from Bitcraze AB, coupled with an AI deck 1.1 expansion deck for complex
onboard learning-based computations.

Crazyflie 2.1 is a small-sized and light-weight quadrotor designed for research.
The low-level flight control is handled by a STM32F405 MCU (Cortex-M4) and the
radio and power management is handled by nRF51822 MCU. It can be powered
by Lithium Polymer (LiPo) battery or via a micro-USB connector. It is equipped
with a host of peripherals such as the UART, SPI, I2C and additional GPIOs.
The firmware to enable flight and peripherals are available as an open source
repository. The Crazyflie supports hardware expansions to include other micro-
controller, or add on sensors for complex applications. The onboard radio enables
wireless firmware updates for ease of development. One such expansion board
is the AI deck 1.1. The AI deck hosts a PULP-based GAP8 processor mentioned
in section 2.3.2 and is equipped with a Himax HM01B0 ultralow-power 320 × 320
monochrome camera enabling it to run complex vision-based learning models.
The Himax camera supports standard QVGA resolution (324 × 324) and QQVGA

21

2 Background

resolution (162 × 162). The desired camera resolution can be configured through
a register. The AI deck has an ESP32 NINA module to provide WiFi capabil-
ity for streaming images or data. It also comes with the UART peripherals to
communicate with the Crazyflie host. In combination, the STM32 MCU handles
the control-related tasks while the GAP8 handles the ultralow-power parallel
computation.

Thus the Crazyflie extended with the GAP8 SoC on AI deck, forms a compatible
platform with the PULP tools like NEMO and DORY to enable onboard inference
of vision-based DNNs for relative localization of neighbors in multirotor teams.

(a) Crazyflie 2.1. (b) AI deck 1.1.

Figure 2.4: Hardware platform.

22

3 Approach

The following chapter discusses the methods employed and their implementa-
tion.

A vision-based deep neural network that predicts the relative position of neigh-
boring multirotors is quantized and deployed on a ultralow-power processor
mounted on a small reseach quadrotor. Different variants of the model based
on the resolution of input images are implemented with the goal of evaluating
the onboard real-time performance. The goal of the evaluations is to provide a
comparative analysis of the prediction quality and inference rate of the different
variants. Additional analysis on the influence of the varying input resolution on
the hardware requirements such as memory and computation supplement the
evaluations.

3.1 Implementation Workflow

The workflow followed to implement the end-to-end deployment of a DNN that
predicts the relative position of visible neighbors on-board the GAP8 processor is
shown in fig. 3.1.

23

3 Approach

Dataset
Preparation

Training with
Synthetic Images

Transfer Learning
with Real Images

 Quantization

Memory Aware
Code Generation

Graph Export

ONNX model

Integer Deployable
 Model

Full Precision Model

Initial Model

Optimization for
GAP8 architecture

C files

Real time onboard
inference

C files

Predictions for center pixels of
visible neighbor and its distance
to camera

NEMO

DORY

PULP-NN

Compile, Build and
Flash

executable binary

GAP SDK

Transform predictions to estimate the
3D relative position between the
detected neighbor and camera

Figure 3.1: Implementation Workflow.

The dataset is created from an open source large database of close-proximity flight
scenario images of multirotor teams and their annotations [15]. The DNN model
that predicts the center pixel of a visible neighbor and estimated distance to the
neighbor from onboard camera is adapted from [12] with minor changes to the

24

3.1 Implementation Workflow

architecture (detailed below in section 3.2). The training and fine-tuning for the
supervised learning of the DNN model is done using the PyTorch framework on a
workstation with 32 GB RAM and an AMD Ryzen 9 3900x 12-core processor. The
trained model is quantized to a model with pure integer representation of weights
and activations using the NEMO library [5]. The IntegerDeployable network is
converted to a memory-aware hardware deployable code in C network using the
DORY tool [3]. The quantization and the generation of C-code for the network
is done on a MacBook with the 1.4 GHz Quad-Core Intel Core i5 processor. The
generated code is extended with the application code for camera operation and
post processing of the network output, then compiled and built to an executable
binary image using the GAP SDK1 provided by the manufacturers of the GAP8

processors. This image can be flashed on to the AI deck microcontroller mounted
on a Crazyflie 2.1 using an Olimex ARM-USB-TINY-H JTAG programmer. The
network runs onboard to perform real-time inference to obtain predictions to
localize the neighbor from camera images. The compile, build, flash tasks are
executed on an Ubuntu 20.04 Virtual Machine on the MacBook.

1https://github.com/GreenWaves-Technologies/gap_sdk

25

https://github.com/GreenWaves-Technologies/gap_sdk

3 Approach

3.2 DNN model architecture

(M/8xN/8) x 8

(M/4xN/4) x 8

(M/8xN/8) x 2

(M/4xN/4) x 4

(M/2xN/2) x 4

(MxN) x 1

Conv-BN-ReLu

Conv-BN-ReLu

Conv-BN-ReLu

MaxPool

MaxPool

Input

Figure 3.2: Model Architecture.

The network architecture is inspired by the work in [12] and modified in order
to suit the limitations by NEMO and DORY while respecting the GAP8 memory
constraints. This network architecture is similar to YOLOv3 [21] but with some
changes in the output. Specifically, instead of predicting bounding boxes around
the detected multirotor, the network outputs the pixel coordinates of the center of
the visible neighbor and its distance to the camera. With these three parameters,
and the information about the camera calibration, the 2D coordinates from a
projected image can be converted back into the corresponding 3D coordinates in
a three-dimensional space using inverse perspective projection (see eq. (2.3)). The
input to the network is a gray-scale image of size (M × N) ∈ [320 × 320, 224 ×
224, 160 × 160, 160 × 96].

The layers of the network are as follows :

1. 2D Conv-BN-ReLU : The layer takes in a raw pixel values of the grayscale
image of size (M × N). The convolution layer has kernel size (3 × 3), stride
of 2, padding of 1 pixel resulting in four output feature maps.

26

3.2 DNN model architecture

2. 2D MaxPooling layer of kernel size (2 × 2) to downsample the detected
features.

3. 2D Conv-BN-ReLU : The layer takes in four (M/4 × N/4) feature maps.
The convolution layer has a filter of size (3 × 3), stride of 1, padding of 1
pixel resulting in eight output feature maps.

4. 2D MaxPooling layer of kernel size (2 × 2) to downsample the detection of
features.

5. 2D Conv-BN-ReLU : The layer takes in eight (M/8 × N/8) feature maps.
The convolution layer has a filter of size (3 × 3), stride of 1, padding of 1
pixel resulting in two channels - one for predicted confidence map and one
for predicted distance.

Grid-based network output for relative localization: From the network grid
output, the indices of the element with the maximum value in channel 1 (shown
by the red dot in fig. 3.3) encode the information about the center pixel of the
detected neighbor and the corresponding cell in channel 2 encodes the distance
information.

320

320

(136,152)

Camera image

40

40 (17,19)

confidence map

distance map

Network output

Figure 3.3: Example of the network output with reference to the camera image of size
320 × 320.

27

3 Approach

Design decisions made due to hardware and tool constraints:

• The first 2D convolutional layer also has the task of reducing the layer pa-
rameters such that they can be accommodated in the 512 kB L2 memory of
GAP8.

• All the convolutional layers have bias turned off due to the tool limitation
of NEMO in which 2D convolution biases are not quantized.

• The architecture is structured as a sequence of Conv-BN-ReLU layers as the
DORY tools expects the network to be structured in this format.

3.3 Dataset and Annotations

To train the above model, the open source dataset2 which contain images of
close-proximity flight scenarios and accurate ground truth for relative position
between neighboring multirotors [15] is used. This open-source dataset consists
of 50000 training and 500 testing images that are 3D rendered (synthetic) and
9000 real-world images captured in an indoor flight space using a Crazyflie 2.1
with rotating single monocular camera mounted on its expansion deck. The
images are gray-scale and are of size (320× 320). The ground truth data provided
contain are i) visible neighbor pose in world frame, ii) relative pose of visible
neighbors in camera frame, iii) center pixels of visible neighbors and bounding
box co-ordinates for each visible neighbor. The original 50000 synthetic training
images are categorized by the number of visible neighbors leading to a smaller
training dataset of 10000 training images with only one visible neighbor. The 9000
real images are also sorted for images with only one visible neighbor, leading to
a smaller dataset of 1436 images. The annotations are filtered to retain only the
single-robot images and the necessary information, i.e., center pixel of a visible
neighbor and the distance to the visible neighbor from the camera (only the z-
coordinate values of the relative pose in camera frame). For testing, the original
dataset also comes with a separate 1500 image synthetic dataset independent of
the training images. Similar filtering as training dataset is applied to this test

2https://github.com/IMRCLab/dataset-cv-rel-pos

28

https://github.com/IMRCLab/dataset-cv-rel-pos

3.3 Dataset and Annotations

images, to obtain a smaller test dataset with 500 images with only one visible
neighbor and the associated annotations.

For the transfer learning phase, a subset of the real-world dataset is created with
the same criteria as the synthetic dataset such that 1339 images are used for
training and 97 for testing. The annotations are filtered to retain only the image
names, center pixel of the visible neighbor and distance from the camera to the
neighbor. Some example images are shown in fig. 3.4:

Figure 3.4: Examples from the dataset [15]. Left: Synthetic image. Right: Real image from
flight experiments. The red dots mark the center pixel of the visible neighbor
retrieved from the ground-truth data.

For training the model, the annotations cannot be directly used as the network
output is designed to be a two channel grid. The image annotations are used
to form labels that are in the (M/8 × N/8 × 2) grid format based on the below
criterion adapted from [12]:⎧⎨⎩c(i, j) = 1, d(i, j) = dgt, i f (i,j) = (xgt/8, ygt/8)

c(i, j) = 0, d(i, j) = 0, otherwise
(3.1)

where (xgt, ygt) represent the center pixel of the visible neighbor, dgt is the distance
from the camera to the visible neighbor (in meters) as calculated from the ground
truth, c(i,j) is the value of channel 1 and d(i,j) is the value of channel 2 at channel
indices (i, j). This means that a cell (i,j) that contains a visible multirotor has
confidence c(i,j) = 1 and the depth of d(i,j) in camera coordinate.

29

3 Approach

3.4 Training and Validation of the Model

The 10000 images from the above mentioned dataset are randomly shuffled and
split into 8000 training and 2000 validation images. The model is then trained
on the 8000 synthetic images for 50 epochs. The hyperparameters are: batch size
chosen is eight and constant learning rate of 0.01. The training is run on a GPU to
speed up the process. After each epoch, a validation is performed with 2000 non-
training images and the loss is recorded. This is done to check the performance
of the training algorithm and tune it if necessary and ensure that the model does
not overfit to the training dataset. After training, the model is saved for transfer
learning.

3.4.1 Loss function

The loss function is used to measure the error between predictions made by the
model and the ground-truth labels and is chosen based on the application. During
the training process, the parameters of the model are adjusted using an Adaptive
Moment Estimation (Adam) optimizer with every iteration to minimize this loss
function. The loss function used during the training of the above model is also
adapted from [12]. The total loss l is defined as the sum of the confidence loss
lc and the distance loss ld. For the confidence loss, binary cross-entropy function
is used while for the distance loss, weighted mean squared error is used with a
weight of 10. The weight is a fine-tuned parameter to ensure that the loss for both
channels are approximately on the same scale:

l = lc + ld

lc = mean(
N/8

∑
i=1

M/8

∑
j=1

(c − ĉ)2[−c · log(ĉ)− (1 − c) · log(1 − ĉ)])

ld = mean(
N/8

∑
i=1

M/8

∑
j=1

10 · c(i, j) · (d̂(i, j)− d(i, j))2)

(3.2)

where ĉ(i, j), c(i, j) are the predicted and ground-truth confidence and d̂(i, j), d(i, j)
are the predicted and ground-truth distance in the grid with indices (i, j) [12].

30

3.5 Quantization of the Model

3.4.2 Transfer Learning with real-world Images

After the first phase of training, the network is refined using transfer learning as
there is a difference between the synthetic images and real-world images captured
by the camera onboard. The model is now initialized with the weights from the
earlier phase of training and trained again for 50 epochs on a real-world dataset
of 1339 images keeping the same hyperparameters and the loss function as in the
previous phase. The model is saved for quantization and inference.

3.5 Quantization of the Model

The next step in the workflow is to perform quantization on the trained model.
This process involves representing the model parameters, including weights and
activations, as integers, making it suitable for deployment on the GAP8 processor.
Post-Training Quantization (PTQ, see section 2.3.1) is performed using NEMO3

(see section 2.4), hence there is no need to re-train the network at this stage.
The quantization is performed in three stages - FakeQuantization for initial clip-
ping of the activations, QuantizedDeployable for clipping of linear layer weights
and incorporating BatchNormalization and finally IntegerDeployable to obtain
a fully integer- and bit-accurate representation of the parameters. The detailed
implementation of the four stages of quantization are discussed in the following
section.

1. FullPrecision : The model obtained as the output of transfer learning is consid-
ered to be the FullPrecision model (FP) for the quantization process. This model
shall also be used as a reference to check if the performance of the model is
maintained throughout the different quantization stages.

2. FakeQuantized : Three tasks performed at this stage are summarized below:

• Calculate the input quantum (see eq. (2.6)): The input quantum ϵ helps
represent an input tensor with Q bits. For models dealing with image pixels

3https://github.com/pulp-platform/nemo

31

https://github.com/pulp-platform/nemo

3 Approach

(integers in the range [0,255], i.e., βi = 255) as inputs and reduced to an
8-bit representation (Q = 8), the calculated quantum is

ϵ = βi/(2Q − 1) = 255/(28 − 1) = 1 (3.3)

• Tranform to NEMO FakeQuantized (FQ model) : This stage takes a FP
module and makes it quantization-aware, i.e., all the data structures of
the convolution and activation layers of the normal PyTorch model (torch
.nn.Conv2d and torch.nn.ReLU) are replaced with the NEMO versions
(nemo.quant.pact.PACT_Conv2d and nemo.quant.pact.PACT_Act). The
FP model is transformed into a FQ model using the NEMO library function
quantize_pact(). The function takes in the FP model and a dummy input,
which is a tensor of the same size as network input (here, a M × N tensor
of random integers). Precision is set via the change_precision() method.
Selection of the parameters for which precision should be set is based on the
value of scale_weights and scale_activations flags. The value for the
bits field is dependent on the hardware platform and on DORY constraints.
In this project, an 8-bit precision for activations (non-negative integers) and
7-bit precision for weights (signed integers) is used as DORY works only
with 8-bit networks. The code snippet is shown below:

1 import nemo

2 import deepcopy

3 model_q = nemo.transform.quantize_pact(deepcopy(model_fp),

dummy_input=dummy_input_net, remove_dropout=True)

4 model_q.change_precision(bits=8, scale_weights=False,

scale_activations=True)

5 model_q.change_precision(bits=7, scale_weights=True,

scale_activations=False)

• Offline Calibration and Quantize Activations : Here the activation layers
are replaced by their quantized version, i.e., the ReLU function output is
clipped to a value ∈ [0,β). While the clipping parameters for weights (α,β)
can be set during quantization in later stages, it is not so for clipping pa-
rameter for activations (β) which, unless explicitly modified, will be always
set to a default value. Thus an offline calibration is necessary. In NEMO,

32

3.5 Quantization of the Model

calibration can be performed by running a special statistics collection mode
for activations using statistics_act() method, which computes β by run-
ning inference over a small dataset. This is called the calibration dataset
and was created with 500 randomly chosen images from the training dataset
(testing_model refers to the inference function, calib_loader is the cali-
bration dataset loader). The value of β4 is reset to the value calculated after
the satistics collection. The code snippet is shown below:

1 with model_q.statistics_act():

2 _ = testing_model(test_folder_path,model_q,calib_loader)

3 model_q.reset_alpha_act()

3. QuantizedDeployable (QD) : The FQ model is transformed into a QD model
using the high-level qd_stage() method, which performs a series of steps
listed below:

• Round and harden weights of convolutional layers, i.e., freezing weights in
their quantized state (the weights are limited to a value ∈ [α,β) but they are
not yet bit-accurate to the hardware).

• Perform quantization for the BatchNormalization layers, i.e., replacing the
parameters of the BN with their quantized versions as per the rules described
in [25]. The BN layers are converted to fully integer scaling operations. The
precision rules for the quantization of BN parameters is not the same as in
FakeQuantized stage but rather set to a default value within NEMO (12-bit in
the current version of the tool). The BN output is now represented with 32
bits.

• Propagating quanta ϵ along the network, for each operator. The input quan-
tum ϵin is set explicitly to the value calculated previously in eq. (3.3) (here,
ϵin = 1).

1 model_q.qd_stage(eps_in=1)

4Note: Due to legacy code, in activations, the parameter referred to as β above is saved in the
alpha parameter in the implementation [5], hence the method name is reset_alpha_act()
.

33

3 Approach

4. IntegerDeployable (ID) : The QD model is transformed into an ID model using
the high-level method id_stage(). At this stage, the network ignores the
quantum and replaces weights and activations by their integer images (see
section 2.4) in all layers.

1 model_q.id_stage()

The ID model is then exported in ONNX format for usage in DORY using tools
provided by NEMO as below:

1 nemo.utils.export_onnx(’path/to/folder/model.onnx’, model_q,

model_q,input_size)

where model_q is the final quantized model and input_size is M × N. The
converted layers of the model as represented in the ONNX format is shown in
fig. 3.5:

(a) NEMO quantized form of BN operation. (b) NEMO quantized form of ReLU operation.

Figure 3.5: Quantized representation of BN and ReLU functions in terms of MAC opera-
tions.

The full ONNX structure can be found in the section appendix C.1. As a final
step, the quantized model activations and the input pixels for one single image
(so-called golden activations) from the dataset is exported as follows:

34

3.6 Testing

• Extract the input and output activations buffers using the nemo.utils.

get_intermediate_activations() function. The function provides the
network layer names and activations for the chosen image as a key-value
pair of an ordered dictionary, one each for input and output.

• Identify the input layer by the key (here, it is the first convolutional layer)
and store the associated activation values in an 1D array to a text file accord-
ing to the string format specified by DORY.

• Identify the output layers by the remaining keys. As NEMO combines Conv-
BN-ReLU into one single node, in this context, output layers are the ReLU
and MaxPool. Then store the associated activation values in an 1D array to
a text file according to the string format specified by DORY. These text files
are input artifacts for DORY to generate the C-code.

• Export output quantum. The quantum value of the last layer (here ReLU) is
exported using the NEMO get_output_eps() function. This quantum is
crucial to convert the quantized network outputs back to their full-precision
values. As described in section 2.4, the fully quantized ID model works
only with the integer images of the real values and discards the quantum.
To use the predictions of the model for further computations and actuation,
the full-precision values need to be recomputed from the integer images
according to eq. (2.7). The quantum for the ID models with different input
resolution as calculated during the quantization is listed in table 3.1. These
values vary slightly with the change in the calibration dataset.

Table 3.1: Quantum calculated for the different models.

Model Input 320 × 320 224 × 224 160 × 160 160 × 96

Quantum 0.0471 0.0321 0.0613 0.0544

3.6 Testing

After every stage of the quantization process, the model is tested with the test
dataset mentioned in section 3.3 to track a potential drop in performance if any.

35

3 Approach

The output of the network is a (M/8 × N/8 × 2) grid. channel 1 of this grid is
a (M/8 × N/8) confidence map c and channel 2 is a (M/8 × N/8) predicted
distance map d from which the predicted center pixel and the distance to the
visible neighbor from camera can be extracted as follows:

(xp, yp) = (8 ∗ w, 8 ∗ h) | c(w,h) = max{c(i,j) : i,j = 1, . . . , 40} (3.4)

dp = d(xp, yp) (3.5)

where (xp, yp) represent the predicted center pixel of the visible neighbor, d is the
predicted distance from the camera to the visible neighbor (in meters), c(i,j) is
the value of channel 1 and d(i,j) is the value of channel 2 of output at channel
indices (i, j). Some example predictions are shown below:

Figure 3.6: Examples from the test dataset of 320 × 320 images. Left: model predictions
on synthetic image. Right: model predictions on real image..

In the above examples, a red dot is drawn over the image to indicate the center
pixel of visible neighbor as taken from the annotations. The green dot indicate
the pixel as predicted by the model. The values for these examples are:

• Left : Predicted Center = (232, 16) ; Annotated Center = (235, 18)

• Right : Predicted Center = (160, 152) ; Annotated Center = (164, 162)

36

3.7 Deploying the Quantized Model

Due to representation of the entire (M× N) image by a reduced (M/8× N/8× 2)
grid, it can be seen that the predictions are always multiples of 8 and hence
sometimes a have an offset of a few pixels from the annotated values.

3.7 Deploying the Quantized Model

The quantized model can now be deployed on the resource constrained GAP8

processor for real-time inference. However the model has to be first converted to
a lower-level C code that enables parallel execution over the available cores and
also handles data transfers between the different levels of memory.

3.7.1 DORY

The DORY5 tool (see section 2.5) is used to convert the quantized model into a set
of C functions that perform the memory management, data transfers and network
inference on the GAP8 processor.

The input required for DORY C-code generation are the ONNX model, the input
and activations for one image, and a configuration file. The configuration file
specifies settings for the bitwidth of the intermediate calculations, the path to
the ONNX model and the allocated code space. The configurations used for this
project are as below :

1 {

2 "BNRelu_bits": 32,

3 "onnx_file": "../outputs/checksum/testnet_ID_quant.onnx",

4 "code reserved space": 297000

5 }

The DORY C-files can be generated by invoking a network_generate.py script
provided in the tool. This code performs the following functions:

5https://github.com/pulp-platform/dory

37

https://github.com/pulp-platform/dory

3 Approach

1. Decode the ONNX graph of a quantized network and organize the nodes into
layers of Conv-BN-ReLU sequences with quantized 8-bit integer inputs and
outputs, 8-bit signed integer weights and 32-bit intermediate signed integers.

2. Determine the tiling by solving the L3-L2 tiling constraint problem (see item 2)
followed by the L2-L1 while adhering to the size constraints of a network layer
and relationships between the input, output and weight tensors. With L3-L2
tiling, activations and weights are stored in the L3 off-chip memory instead of
the on-chip L2 memory. This enables the model with parameter sizes greater
than L2 memory to be executed onboard the GAP8.

3. Generate the C code for the execution of a complete layer as per the tiling
solution defined in the previous step. The data transfers are double-buffered,
i.e., performed simultaneously between L3-L2 and L2-L1, and all data transfers
are pipelined, thus compensating for the data transfer overhead. The pipeline
is shown in fig. 3.7.

Figure 3.7: The pipeline of execution in the DORY C code. The data transfers are done
parallely to the computation of the previous copied data. This is possible
as the DMA calls are asynchronous and non-blocking. One call copies the
weights and input activation of the next tile into L1 memory while the kernel
is executed on the current tile, and the other copies the output back on the L2
memory[3].

4. Build the network with each layer as different invokable functions. The func-
tions ensure the movement of weights from L3 to the consecutive layers of
memory, and handle the execution of the layers starting from the correct mem-
ory buffers and update of the input and output buffer offsets for next execution.

The different generated files are described below:

38

3.7 Deploying the Quantized Model

1. Binary files : The weights, activations and input data of the single image
exported by NEMO is converted to layer-wise .hex files that can be loaded
on to the L3 memory. These files help in performing the checksum tests to
ensure that the quantized network is running correctly on the hardware.

2. .c and .h files : These contain the functions implementing the different
tasks involved in running the onboard inference. The main.c file holds the
start of execution, functions for peripheral tasks (such as camera operations,
UART for communication with peripherals, memory initialization), and run-
ning the network. The BNReluConvolution*.c, Pooling*.c files describe
the transfer of tiles containing the network parameters from L3 to L2 and
transfer of output from L1 to L2 for the respective network layers. pulp_nn_

.c, pulp_nn_.h are a set of files executing the computational backend
PULP-NN library, that handles parallelized computation on L1 data over
the eight cores. network.c, network.h are files that contain the layer-wise
size information, handle allocation of buffers for parameters needed by the
network execution and triggers initialization, checksum tests, running and
termination of the network. It also contains some functions for performance
analysis.

The network summary for the largest model as calculated by DORY in the network
.h is shown:

1 static const char * L3_weights_files[] = {

2 "BNReluConvolution0_weights.hex", "BNReluConvolution2_weights.

hex", "BNReluConvolution4_weights.hex"

3 };

4 static int L3_weights_size[3];

5 static int layers_pointers[5];

6 static char * Layers_name[5] = {"BNReluConvolution0", "Pooling1",

"BNReluConvolution2", "Pooling3", "BNReluConvolution4"};

7 static int L3_input_layers[5] = {1,0, 0, 0, 0};

8 static int L3_output_layers[5] = {0, 0, 0, 0, 0};

9 static int allocate_layer[5] = {1, 0, 1, 0, 1};

10 static int branch_input[5] = {0, 0, 0, 0, 0};

11 static int branch_output[5] = {0, 0, 0, 0, 0};

12 static int branch_change[5] = {0, 0, 0, 0, 0};

13 static int weights_checksum[5] = {5399, 0, 43742, 0, 9355};

39

3 Approach

14 static int weights_size[5] = {68, 0, 352, 0, 80};

15 static int activations_checksum[5][1] =

{{3176002},{63118},{175245},{117316},{39174}};

16 static int activations_size[5] = {102400, 102400, 25600, 51200,

12800};

17 static int out_mult_vector[5] = {1, 1, 1, 1, 1};

18 static int out_shift_vector[5] = {23, 0, 22, 0, 22};

19 static int activations_out_checksum[5][1] =

{{631186},{175245},{117316},{39174},{4}};

20 static int activations_out_size[5] = {102400, 25600, 51200,

12800, 1600};

21 static int layer_with_weights[5] = {1, 0, 1, 0, 1};

3.7.2 Memory Management and Checksum Tests

An important consideration to be made during the deployment of the model for
inference is related to the memory management for the application code and the
weights and activations of the network. The largest number of activations exists
for the model with the highest input image resolution where the first and second
layer occupy 102400 bytes (line 16 in the network summary code 3.7.1) each.
The outputs are stored in 3200 bytes (which correspond to the 40 × 40 × 2 grid).
During the execution of the network, the inputs are obtained from a separate L2
buffer. This L2 buffer is the camera buffer that gets populated with the pixels
of the image captured by the camera. Since the largest network works with
images of size 320 × 320, the L2 camera buffer must be allocated at least with
102400 bytes for the image pixels. Thus adding up the above mentioned partial
memory requirements, the L2 buffer should be greater than 102400 + 102400 +

3200 = 208000 bytes. Additionally smaller memory requirements for weights
and intermediate results should be considered. Thus the choice made for code
space is 297000 bytes leaving 215000 bytes of the 512000 bytes of L2 memory for
the weights and activations. Even though the DORY policy enables execution of
layers whose parameters are larger than 512000 bytes of L2 memory, experiments
in [3] show that having activations larger than the L2 memory bounds and loading
them from L3 slows down the execution of the network. Hence the network is

40

3.8 Camera Calibration

constructed in such a way, that the layer with largest number of activations can
still fit within the L2 memory bounds.

To guarantee that the DORY C-code deployed on the GAP8 is accurate and that
the memory constraints are met, checksum tests are done, i.e., checksums of the
weights and activations of every layer on the GAP8 are compared to those of the
golden activations. The checksum results for all four models are ensured to be
’OK’ before proceeding to the experiments:

Figure 3.8: Checksum tests for the model onboard GAP8.

3.8 Camera Calibration

The final network output is used to estimate the 3D relative position of the de-
tected neighbors using eq. (2.3). In addition to the network output, a camera
intrinsic matrix is required for the relative localization. A camera calibration pro-
cess to obtain the intrinsic parameters is carried out with a known checkerboard
pattern. A series of images of the checkerboard pattern is captured from the cam-
era at various positions and orientations. Then the camera intrinsic parameters
are computed with the help of the open source scripts from the IMRC lab6 [15].
This process is performed for calibration images of sizes 320 × 320, 224 × 224,
160 × 160 and 160 × 96.

6https://github.com/IMRCLab/dataset-cv-rel-pos

41

https://github.com/IMRCLab/dataset-cv-rel-pos

3 Approach

3.9 Develop Application C Code

The generated DORY C files have a standard code that performs loading of the
golden activations, allocate L2 memory for the network (here 215000 bytes) and
run the checksum tests. For the application in this project, additional functionali-
ties must be added for vision-based state estimation onboard the chosen ultralow-
power hardware platform (see fig. 2.4). The functionalities are developed using a
board support package (BSP) provided by the manufacturers of GAP8. The flow
of execution is as follows:

• Initialize : Set the camera configuration format (see section 2.7) and camera
parameters such as auto exposure gain, digital gain and exposure based on
the lighting conditions of the test environment. Also allocate input buffers for
the camera image pixels and output buffers for the network predictions. The
chip frequency is set to 100 MHz for both the FC and CL. The voltage is set by
default to 1 V.

• Camera operation and image processing : Open the Himax monochrome cam-
era, capture an image, and close the camera. The captured image is of size
324 × 324 with two rows of dead pixels on all sides. The captured image must
be cropped to remove the dead pixels to obtain the appropriate image size to
be used as an input to the network.

• Network inference and post processing : Once the image is cropped, it is sent
to the network for inference using the generated functions from DORY. The
prediction output of the network is a 2-channel grid output stored as long 1D
array. The center pixel is calculated from the prediction using eq. (3.4) and
distance to camera is calculated using eq. (3.5). Post-processing also includes
dequantization as necessary. For channel 1, the outputs (i.e., the center pixel
of the neighbor) are naturally integers hence there is no conversion required.
However, for channel 2, the integer image of the distance prediction should be
dequantized to full-precision as follows:

d = dp ∗ NEMO_QUANTUM (3.6)

42

3.9 Develop Application C Code

where dp is the distance prediction obtained from the network output and
NEMO_QUANTUM is a constant real number obtained from the quantization
process as described in section 3.5. The quantum used for the ID models with
different input resolution is taken from table 3.1.

• Timing calculations : Two timestamp measurements are taken - one before
the opening of the camera and one after the prediction post processing. The
difference in these two values give the inference time for one image.

43

4 Results

The following chapter describes the experimental methods and the results ob-
tained for benchmarking the onboard inference of the quantized model in com-
parison to the original full-precision model. First, a comparison between the
FullPrecision (FP) and IntegerDeployable (ID) models with four different input
image resolutions (320 × 320, 224 × 224, 160 × 160 and 160 × 96) is done. The
comparisons evaluate predictions of the two output parameters, i.e., center pixel
of the visible neighbor and distance to it from the camera on the test dataset.
These tests are run on a laptop with the i5 processor.

Subsequently, a series of experiments are performed after deploying the quan-
tized models on the GAP8 processor. The onboard inference results are compared
against the FP model predictions for the two output parameters as before. The pre-
dictions are then used for computing the relative position of the visible neighbor
with respect to the camera.

A comparative analysis is carried out to assess the onboard performance of the
models under various input resolutions and the trade-offs that have to be con-
sidered for prediction quality and the inference speed (frames/s). Finally, the
different model variants are evaluated for their prediction quality against the
ground-truth data using 97 test images from the real image dataset of [15]. The
summary of the network characteristics that affect the onboard inference for the
four quantized models are shown in table 4.1.

44

4.1 Comparison of the FP model with the ID model

Table 4.1: Summary of the model characteristics for one frame inference.

Model Input 320 × 320 224 × 224 160 × 160 160 × 96

Min. L2 Memory required [kB] 400.58 196.58 100.58 60.58
Parameters (×103) 294.980 144.836 74.18 44.74
Operations [MAC](×106) 2.88 1.47 0.75 0.45

The minimum L2 requirements are based on the analysis done in 3.7.2 and con-
siders the sizes of the weights, activations, input and output. The parameters,
refer to the total number of weights and activations in the network. Operations,
refer to the number of multiply-and-accumulate (MAC) computations needed to
perform one input image inference.

4.1 Comparison of the FP model with the ID model

The training of the network is performed on a Ubuntu workstation equipped
with a GPU for 50 epochs. The quantization is performed on an Intel i5 MacBook
laptop. After each stage of quantization, the predictions for center pixel of visible
neighbor and its distance to camera are stored in separate yaml format files to
be used for comparison (for stagewise comparision of the quantized model, see
A).

The accuracy drop due to quantization, occur in the first stage due to clipping of
the weights and activations to a fixed-point threshold during FQ stage. Specifically,
the performance of the FP model against the ID model on the laptop is observed
for all images in the test dataset, i.e., 500 synthetic images and 97 real images that
are unseen during training. The error is computed as the difference between the
predictions of the FP model and the dequantized predictions using eq. (3.6) of
the ID model for both center pixel (xp,yp) calculated from eq. (3.4) and distance d
calculated from eq. (3.5).

45

4 Results

xp

 320x320

yp xp

224x224

yp xp

160x160

yp xp

160x96

yp

150

100

50

0

50

100

150

Po
sit

io
n

Er
ro

r (
in

 p
ix

)

2D Position Prediction Error in image

Figure 4.1: Prediction errors for center pixel of visible neighbor between the FP and ID
models on 500 synthetic test dataset.

d

 320x320

d

224x224

d

160x160

d

160x96

0.4

0.2

0.0

0.2

Di
st

an
ce

 E
rro

r (
in

 m
)

Distance Prediction Error

Figure 4.2: Prediction errors for distance to visible neighbor between the FP and ID mod-
els on 500 synthetic images test dataset.

46

4.1 Comparison of the FP model with the ID model

xp

 320x320

yp xp

224x224

yp xp

160x160

yp xp

160x96

yp
150

100

50

0

50

100

150

200

Po
sit

io
n

Er
ro

r (
in

 p
ix

)

2D Position Prediction Error in image

Figure 4.3: Prediction errors for center pixel of visible neighbor between the FP and ID
models on 97 real test dataset.

d

 320x320

d

224x224

d

160x160

d

160x96

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Di
st

an
ce

 E
rro

r (
in

 m
)

Distance Prediction Error

Figure 4.4: Prediction errors for distance to visible neighbor between the FP and ID mod-
els on 97 real images test dataset.

47

4 Results

4.2 On board inference on a robotic platform

The robotic platform used for the onboard inference of the DNN model for vision
based relative state estimation is Bitcraze Crazyflie 2.1 quadrotor extended with
the AI deck 1.1. It has the computational capabilities to run complex DNNs
onboard (GAP8 processor) and other supporting peripheral such as a the Himax
camera module, and an ESP32 module for WiFi connectivity for streaming images
and data.

Crazyflie 2.1

Himax camera

AI Deck 1.1

Figure 4.5: Crazyflie 2.1 with mounted AI deck 1.1 for experiments.

4.2.1 Setup of Crazyflie 2.1 and AI deck 1.1

The Crazyflie 2.1 is assembled following the instructions on the Bitcraze website 1.
It is powered by a small 3.7 V LiPo battery. Upon the powering on the Crazyflie, it
automatically runs through a short sequence of self tests and sensor calibrations
to get ready to fly. Bitcraze also provide a Crazyradio 2.0 USB radio dongle
and the Crazyflie client software with a GUI that can be used for controlling the
Crazyflie, flashing firmware, setting parameters and logging data. The Crazyflie
device address is changed from the default (radio://0/80/2M/E7E7E7E7E7) for
unique identification through the Crazyflie client. To enable the Crazyflie to fly,

1https://www.bitcraze.io/documentation/tutorials/getting-started-with-
crazyflie-2-x/

48

https://www.bitcraze.io/documentation/tutorials/getting-started-with-crazyflie-2-x/
https://www.bitcraze.io/documentation/tutorials/getting-started-with-crazyflie-2-x/

4.2 On board inference on a robotic platform

communicate with the control software, and interact with sensors and peripherals
onboard, Bitcraze’s open-source firmware 2 is used. The firmware is customized
to change the WiFi configurations for the expansion AI deck from default values
to the right network ID and password 3. The firmware can then be compiled and
built using the RISC-V C/C++ tool chain with GNU Compiler Collection (GCC)
on an Ubuntu 20.02 Virtual Machine. The new binary is flashed wirelessly via the
Crazyradio 4.

The AI deck 1.1 is an expansion deck that can be directly mounted on top of
the Crazyflie and is also powered by the battery connected to the Crazyflie. The
Bitcraze tutorial 5 for working with AI deck was followed to flash the AI deck
firmware (both ESP32 and the GAP8) also wirelessly via the Crazyradio.

For the application development, i.e., onboard inference of DNN on the GAP8, an
environment with the GAP SDK installed is required. Fortunately, Bitcraze also
provide a Docker container which has all the necessary configurations required
for building and flashing the custom application code (here, the extended DORY
C code). The generated DORY C code also includes a configurable Makefile for
providing the settings for compilation. Here, we proceed with the default settings
and modify only the number of cores in operation through the variable CORES for
the experiments.

4.2.2 Experimental Setup

The first step consists of data collection, where the AI deck mounted on top of
the Crazyflie (CF1) is flashed with an application code that can continuously take
images from the camera and stream them simultaneously to a device connected
on the same WiFi network. The camera is configured for full resolution readout
by setting the register 0x3010 to 1 (PI_CAMERA_QVGA). Then a different Crazyflie
(CF2) is placed on a surface and images of this stationary CF2 are taken from all

2https://github.com/bitcraze/crazyflie-firmware
3https://www.bitcraze.io/documentation/repository/crazyflie-firmware/mas
ter/development/kbuild/

4https://www.bitcraze.io/documentation/repository/crazyflie-firmware/mas
ter/building-and-flashing/build/

5https://www.bitcraze.io/documentation/tutorials/getting-started-with-
aideck/

49

https://github.com/bitcraze/crazyflie-firmware
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/development/kbuild/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/development/kbuild/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/building-and-flashing/build/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/building-and-flashing/build/
https://www.bitcraze.io/documentation/tutorials/getting-started-with-aideck/
https://www.bitcraze.io/documentation/tutorials/getting-started-with-aideck/

4 Results

different angles from the camera onboard CF1 with the WiFi image streamer ap-
plication6. The pictures captured are of size 324× 324 of which four border pixels
are discarded on all sides for an effective resolution of 320 × 320, as described
in section 3.9 . 100 images are taken and saved for all further tests. The same
100 images are resized and saved separately for each of the smaller resolutions
(224× 224, 160× 160, 160× 96) Some images from the dataset are shown below:

Figure 4.7: Sample from the images collected with CF1. Top Left : 320 × 320, Top Right :
224 × 224, Bottom Left : 160 × 160, Bottom Right : 160 × 96.

4.2.3 Onboard inference of 100 recorded real-world images

On the laptop, inference is run on the recorded and resized 100 images through
both the FP and ID models for each of the input resolutions. The predictions from
these models are set as a benchmark to compare the performance on the GAP8

processor. To test the performance of the quantized model on the GAP8 processor,

6https://github.com/IMRCLab/aideck-gap8-examples/tree/cvmrs/examples/o
ther/wifi-img-streamer

50

https://github.com/IMRCLab/aideck-gap8-examples/tree/cvmrs/examples/other/wifi-img-streamer
https://github.com/IMRCLab/aideck-gap8-examples/tree/cvmrs/examples/other/wifi-img-streamer

4.2 On board inference on a robotic platform

the application code generated by DORY is extended to load an input hex file
(representing a single image) from the external L3 memory into an L2 buffer, run
inference on the image, and compute the network output. This application is built
and then flashed to the AI deck 1.1 using the Olimex ARM-USB-TINY-H JTAG
programmer. The decision to use a wired connection for flashing was made due to
the binary file’s size, which made wireless flashing less efficient. The 100 images
used for FP and ID model bench-marking are then sent for inference (one by one)
on the GAP8. The predictions from the network are post processed according
to eq. (3.4) and eq. (3.5) to obtain the center pixel of the detected Crazyflie (CF2)
and the distance to it from the camera of CF1. The output from the AI deck
was logged to a .txt file via the Olimex ARM-USB-TINY-H JTAG debugger and
subsequently parsed to extract relevant results.

The inference results of the three models (FP, ID and GAP8) on these 100 images
are stored in separate yaml files and compared. The comparison is a simple error
computation (FP vs ID and ID vs GAP8) for the three outputs from inference on
the model running on CF1, i.e.,

1. difference between the predictions of x-coordinates of the center pixel in
image of CF2

2. difference between the predictions of y-coordinates of the center pixel in
image of CF2

3. difference between the distance predictions to CF2

Notably, for all of the 100 images, the error between the ID models and the GAP8

models was consistently zero. Thus, both the distance predictions and the CF2
center pixel predictions are identical for the ID model running on the laptop and
the GAP8 model executing on the AI deck. This check ensures that the memory
management on the GAP8 does not violate the bounds and the xp, yp and d
computations performed onboard is consistent with the computations done in the
comparison script on the laptop.

The errors in inference on the same 100 images (CORES = 8) between the FP model
and the model running onboard the AI deck are shown in the plots below:

51

4 Results

xp yp
150

100

50

0

50

100

Po
sit

io
n

er
ro

r (
in

 p
ix

)

2D Position Error (FP vs GAP8)

xp yp
80

60

40

20

0

20

40

60

80

Po
sit

io
n

er
ro

r (
in

 p
ix

)

2D Position Error (FP vs GAP8)

Figure 4.8: Prediction Errors between FP and GAP8 for Left : 320 × 320 and Right :
224 × 224.

xp yp

100

50

0

50

100

Po
sit

io
n

er
ro

r (
in

 p
ix

)

2D Position Error (FP vs GAP8)

xp yp
60

40

20

0

20

40

60

80

Po
sit

io
n

er
ro

r (
in

 p
ix

)

2D Position Error (FP vs GAP8)

Figure 4.9: Prediction Errors between FP and GAP8 for Left : 160 × 160 and Right :
160 × 96.

There is a slight drop in performance of the quantized model running onboard the
GAP8 processor as compared to the FP model. Most CF2 center pixel predictions
are within ±32 pixels for the larger resolutions and within ±8 pixels for the
smaller resolutions with some outliers due to wrong predictions. While inspecting
the predictions, it was noticed that the higher resolution models with 10 wrong
predictions each performed better than the lower resolution models with 16 and
27 wrong predictions for (160 × 160) and (160 × 96) images respectively.

52

4.2 On board inference on a robotic platform

d
0.3

0.2

0.1

0.0

0.1

0.2

Di
st

an
ce

 e
rro

r (
in

 m
)

Distance Error (FP vs GAP8)

d

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Di
st

an
ce

 e
rro

r (
in

 m
)

Distance Error (FP vs GAP8)

Figure 4.10: Prediction Errors between FP and GAP8 for 320 × 320 (Left) and 224 × 224
(Right).

d
0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

Di
st

an
ce

 e
rro

r (
in

 m
)

Distance Error (FP vs GAP8)

] d
0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

Di
st

an
ce

 e
rro

r (
in

 m
)

Distance Error (FP vs GAP8)

Figure 4.11: Prediction Errors between FP and GAP8 for 160 × 160 (Left) and 160 × 96
(Right).

On inspecting the predictions for the distance to the center of CF2, it was observed
that the distance errors had a maximum mean of 0.025 m for the 160× 160 variant
and the model that best maintained its performance onboard was the 224 × 224
variant with a mean error of 0.0092 m. The predictions for pixel coordinates
from the three different models are visually annotated on the respective images.
Additionally, the error in distance predictions between the FP and ID models is

53

4 Results

superimposed and displayed on the image. Some visual representations of the
predictions are shown below:

0.004

Prediction Comparison on Image 2
FP
ID
GAP8

0.015

Prediction Comparison on Image 32
FP
ID
GAP8

Figure 4.12: Left: Predictions close to the actual center of CF2 and consistent predictions
between the three models with 0.4cm error in distance prediction. Right:
Predictions on the propeller of CF2, slightly offset from center but consistent
predictions between the three models. Higher error of 1.5cm in distance
prediction (Image size = 320 × 320).

0.08

Prediction Comparison on Image 71
FP
ID
GAP8

-0.002

Prediction Comparison on Image 100
FP
ID
GAP8

Figure 4.13: Left: False predictions of ID and GAP8, center predicted to be on the CF1
propeller visible in the image. Right: False predictions on the surface close
to the propeller of CF2, but consistent predictions between the three models.
Error of 0.2cm in distance prediction (Image size = 320 × 320).

54

4.2 On board inference on a robotic platform

The same process as above is repeated to observe the performance of the model
as the number of operational cores of the GAP8 processor is limited. Inference for
100 images is done for CORES = 1, 2, 4 and 8. As the binary file that runs onboard
remains the same, it was observed that the predictions remained consistent for
all resolutions. There were no additional reductions in the quality of predictions
when the number of cores was limited.

4.2.4 Inference speed with hardware configuration

In the second set of experiments, the application code is extended to also in-
clude camera operation and time measurements as described in section 3.9. The
application code is allowed to run continuously to capture a new image, crop
the dead pixels, send image for inference and compute the outputs, repeated for
100 instances. The time for inference on one image (one frame) is calculated as
an average of the 100 measured inference times. The experiment is repeated by
changing the number of cores in operation to 1, 2, 4, and 8. The observations made
for the inference time per image for the different number of operational cores is
as below:

Table 4.2: Single frame inference time (in ms) vs Cores for different resolutions.

Input Resolution
Cores

1 2 4 8

320 × 320 220.61 155.74 123.51 107.48
224 × 224 143.40 111.31 95.50 87.71
160 × 160 95.31 78.86 70.68 66.73
160 × 96 79.14 69.24 64.34 62.10

Reducing the number of active cores in GAP8 slows down the execution of the
network as the number of parallel computations that can be performed is limited.
The table 4.2 lists the inference times measured for the predictions on one single
frame as the number of active cores are varied. This information can be used to
calculate the achievable inference speed in frames/s :

Inference Speed (frames/s) = 1 ÷ Inference time for a single image (s) (4.1)

55

4 Results

The graph below shows the achievable inference speed as a function of the number
of active cores for the different model variants. If the input resolution is reduced,
and the GAP8 processor is set to utilize all 8 cores for computations, then the
reduced model achieves a higher inference rate than the original model.

1 2 3 4 5 6 7 8
Number of Active Cores

4

6

8

10

12

14

16

In
fe

re
nc

e
Sp

ee
d

(fr
am

es
/s

)

Cores vs Inference Speed

320x320
224x224
160x160
160x96

Figure 4.14: Variation in inference speed with respect to change in active cores.

4.2.5 Prediction quality with quantization

The predictions from all models is used to compute the 3D position of the visible
neighbor (CF2) relative to the camera onboard CF1 using the equations described
in eq. (2.3). The intrinsic parameters of the onboard camera of CF1 is obtained
from the camera calibration process described in section 3.8 . To observe how the
false predictions of the quantized model translate to the errors in the 3D relative
position, Euclidean distance metric is used:

Error =
√︂
(xFP − xGAP8)2 + (yFP − yGAP8)2 + (zFP − zGAP8)2, (4.2)

where (xFP, yFP, zFP) and (xGAP8, yGAP8, zGAP8) refer to the 3D position of the
detected neighbor computed from the predictions of the FP model and from
the GAP8 respectively. The error between the 3D relative position estimation
computed from eq. (4.2) is shown below :

56

4.2 On board inference on a robotic platform

320x320 224x224 160x160 160x96
0.0

0.2

0.4

0.6

0.8

1.0
Eu

cli
de

an
 D

ist
an

ce
 E

rro
r (

in
 m

)

Euclidean Distance Error in 3D relative position

Figure 4.15: Euclidean Distance error in the 3D relative positions estimated for 100 im-
ages.

From the observations, it can be seen that the model that best maintained its
onboard performance to the FP model was the one with input images of size
224 × 224. The mean and standard deviations of the error for the 100 images
recorded from Crazyflie is reported in table 4.3:

Input Resolution
Euclidean Error

µ σ

320 × 320 0.047 0.09
224 × 224 0.046 0.101
160 × 160 0.103 0.17
160 × 96 0.08 0.184

Table 4.3: Euclidean Distance error in the 3D relative positions estimated from 100 images
(lowest is best).

4.2.6 Prediction quality with variation in the input resolution

The experiments above only approximate how the quantization affects perfor-
mance of a model given an image of a particular input resolution. Additionally,
it is important to evaluate how the quality of the 3D relative position estimation

57

4 Results

varies as resolution of the input image is reduced. The models must be evaluated
for the 3D relative position computed from their predictions against the ground-
truth information to observe the accuracy as a function of resolution. To perform
such an evaluation, the test images from the real image test dataset described in
section 3.3 are used as these images have ground-truth annotations for center pixel
of the neighbors and the distance to them. For resolutions other than 320 × 320,
the test images are resized using the nearest neighbor interpolation to preserve
pixel information. The annotations for the center pixel are estimated based on the
ratios of the new height and width to the original dimensions of 320 × 320. The
annotations for the distance is preserved. The 3D relative position is calculated
using eq. (2.3) (and camera intrinsic parameters obtained from calibration process
described in section 3.8).

Error =
√︂
(xFP − xGT)2 + (yFP − yGT)2 + (zFP − zGT)2, (4.3)

where (xFP, yFP, zFP) and (xGT, yGT, zGT) refer to the 3D position of the detected
neighbor computed from the FP model predictions and from the annotations in
the real image dataset respectively. The error in the 3D relative position estimation
computed as per eq. (4.3) is shown below :

320x320 224x224 160x160 160x96
0.0

0.2

0.4

0.6

0.8

1.0

Eu
cli

de
an

 D
ist

an
ce

 e
rro

r (
in

 m
)

Euclidean Distance Error for different resolutions

Figure 4.16: Euclidean Distance error in the 3D relative positions estimated from 97 im-
ages.

58

4.3 Discussion

performance of the 320× 320 was . The mean and standard deviations of the error
for the 97 real images is reported in table 4.4:

Input Resolution
Euclidean Error

µ σ

320 × 320 0.331 0.198
224 × 224 0.367 0.176
160 × 160 0.451 0.197
160 × 96 0.435 0.206

Table 4.4: Euclidean Distance error in the 3D relative positions estimated from 97 real
images (lowest is best).

4.3 Discussion

In the following section, the results from the above experiments are discussed. The
choice of the model architecture and the hardware configurations both influence
the performance of real-time relative localization. A trade-off has to be made
between the prediction quality and the inference rate that can be achieved based
on the application. The following table summarizes the model performance as the
resolution is changed, and the best performance for each criteria is highlighted:

Table 4.5: Model performance with different input resolutions.

320 × 320 224 × 224 160 × 160 160 × 96

Inference speed
(frames/s)

9.30 11.40 14.99 16.10

Mean Euclidean Distance Error
(against ground-truth)

0.331 0.367 0.451 0.435

Mean Euclidean Distance Error
(due to quantization)

0.047 0.046 0.08 0.103

59

4 Results

The performance of these models against ground-truth form a baseline for evalu-
ating their prediction quality. It was observed that reducing the input resolutions
from 320 × 320 to 224 × 224 leads to approximately 11% increase in the errors of
3D position estimation. However both models have almost equal drops in predic-
tion quality upon quantization. Using the model with the lower resolution enables
performing inferences at approximately 22% higher speed than 320 × 320. Addi-
tionally, the on-chip memory requirements of the 224 × 224 model is around 0.5x
the memory requirements for the 320 × 320 model (table 4.1). Both the 160 × 160
and the 160 × 96 models have a significant drop in prediction quality when com-
pared to the ground-truth (approximately 36% and 31% higher errors). Their
quantization errors are also significantly higher as compared to the two larger
resolutions. Even though these models achieve around 60 − 70% higher inference
speed and have significantly lower memory requirements, they may not be very
well suited for applications where a reliable 3D relative position estimation is
required.

In general, the choice of the input image resolutions should be based on the
requirements of the application. For a task with highly accurate but sporadic
relative localization, it is favorable to choose the highest input resolution. But
if the objectives require higher inference speed with tolerable error in relative
localization, possible in a highly dynamic environment, then using images of
224 × 224 is the favorable choice.

An important factor to account for, is the scalability of these models for relative
localization in multirotor teams. Due to the grid-based mechanism of the neural
network, the model may be capable of detecting multiple neighbors in the image,
even if trained on only images with a single visible neighbor. Each grid is treated
as a small independent chunk of the image and has independent confidence and
distance predictions. On scaling the relative localization method to multirotor
teams, there is a possibility that the prediction quality reduces. If the neighbors
are located in close proximity and hence occupy the same grid cell in the neural
network output, one of the multirotor may go unnoticed. The quality may reduce
further if input images of lower resolutions are used.

60

5 Conclusion

Multirotors have demonstrated their versatile abilities in applications such as
search-and-rescue, inspection, and delivery among others. Pocket-sized multiro-
tors working together in a team increase the capabilities of a single multirotor. For
autonomous cooperative tasks, these multirotors must have the ability to estimate
the relative positions of their neighbors in real-time while relying only on their
onboard computing units. Thus, the relative localization methods employed must
adhere to the resource constraints of the small ultralow-powered processors on
the multirotors. Vision-based deep neural networks have proven successful in pre-
dicting relative positions; however, they are naturally memory and computation
intensive for the processors on board these small multirotors.

In this work, a vision-based deep neural network for relative localization was
quantized and deployed on a light-weight quadcopter with an ultralow-power
parallel computing processor and a grayscale camera. Variants of the model with
different input resolutions were implemented and the effect of quantization was
studied. Quantization leads to a small drop (≈ 4 − 10% errors introduced based
on the variant) in the prediction quality of the models but these are tolerable
trade-offs for real-time onboard capabilities. The performance of the deployed
models were analyzed further for the absolute prediction quality and inference
speed criteria. Experiment results show that using images of higher resolution
guarantees a better prediction quality than images of lower resolutions at the
cost of processing lesser number of images per second. Thus, trade-off must
be considered when choosing between higher image resolution for improved
accuracy and lower image resolution for faster inference speed. Other small,
but important criterion like the memory required to store the parameters of the
network, the number of MAC operations and the frequency configuration of

61

5 Conclusion

the computing units also influence the choice of the model for real-time relative
localization.

The models presented have the capability for multi-robot relative localization,
however there may be some reduction expected in prediction quality if the neigh-
bors are located in close proximity. Further drop in prediction quality can be
expected if the input image resolutions are reduced. The inference speed, can be
expected to remain approximately the same as in the findings of the thesis. This
is because the computations of the neural network account for the majority of the
inference time, which due to the grid-based network output remains the same
for multiple neighbors. There might be a slight addition to the inference time in
the post-processing of the network output but that can be compensated by paral-
lelizing the 3D position estimation on the STM32 MCU while GAP8 computes on
the inference on the next image. Further developments may include improving
the deep neural network for multi-robot detections and localization for efficient
swarming.

62

Appendix A

Stagewise quantization performance
evaluation

The stage-wise performance during quantization of the models is shown. The
FP refers to the FullPrecision model, FQ to the FakeQuantization model, QD to
QuantizedDeployable model and ID to IntegerDeployable model. GT refers to the
ground truth annotations from the dataset.

GT vs FP FP vs FQ FQ vs QD QD vs ID

200

100

0

100

200

300

x
pi

xe
l p

re
di

ct
io

n
er

ro
r (

in
 p

ix
)

2D Position Prediction Error in image (x-axis)

Figure A.1: 2D position (x-axis) error in image across different stages of quantization for
97 real images dataset.

63

Appendix A Stagewise quantization performance evaluation

GT vs FP FP vs FQ FQ vs QD QD vs ID

200

100

0

100

200
y

pi
xe

l p
re

di
ct

io
n

er
ro

r (
in

 p
ix

)
2D Position Prediction Error in image (y-axis)

Figure A.2: 2D position (y-axis) error in image across different stages of quantization for
97 real images dataset.

GT vs FP FP vs FQ FQ vs QD QD vs ID

0.4

0.2

0.0

0.2

0.4

0.6

di
st

an
ce

 e
rro

r (
in

 m
)

Distance Prediction Error

Figure A.3: Distance error across different stages of quantization for 97 real images
dataset.

The distance predictions are most affected by quantization. This is because unlike
a pixel coordinate which is naturally an integer, the real-valued distance metric
loses precision when converted to integers.

64

Appendix B

Additional GAP8 performance metrics of
onboard inference

Table B.1 shows the time taken by the GAP8 processor for a single frame infer-
ence. By increasing the number of active cores, faster inference times can be
achieved. As expected, keeping all cores active, the inference times for larger
input resolutions are higher (≈ 15x) than the inference times for smaller input
resolutions.

Input Resolution
Cores

1 2 4 8

320 × 320 220.61 155.74 123.51 107.48
224 × 224 143.40 111.31 95.50 87.71
160 × 160 90.23 73.70 65.60 61.60
160 × 96 24.63 14.56 9.70 7.45

Table B.1: Single frame inference time (in ms) vs Cores for different resolutions.

Input Resolution
Cores Speed-up vs.

1-core1 2 4 8

320 × 320 13.28 6.79 3.57 1.97 6.7x
224 × 224 6.58 3.37 1.78 1.01 6.5x
160 × 160 3.40 1.74 0.93 0.53 6.4x
160 × 96 2.03 1.04 0.56 0.32 6.3x

Table B.2: Application Performance [Mcycles] vs Cores for different resolutions.

65

Appendix B Additional GAP8 performance metrics of onboard inference

The cycles-counts capture the CPU time and also DMA accesses. Hence change
in the number of parameters of the network by reducing the input resolution
influences the cycle-counts [6].

66

Appendix C

ONNX representation

C.1 Full ONNX representation of the model with input

320x320 images

This figure was visualized using Netron1, a viewer for neural network.

1https://github.com/lutzroeder/netron

67

https://github.com/lutzroeder/netron

Appendix C ONNX representation

Figure C.1: Full ONNX representation of the model with input 320 × 320 images.

68

C.1 Full ONNX representation of the model with input 320x320 images

Figure C.1: Full ONNX representation of the model with input 320 × 320 images.

69

Appendix C ONNX representation

Figure C.1: Full ONNX representation of the model with input 320 × 320 images.

70

Bibliography

[1] Meysam Basiri et al. “Audio-based localization for swarms of micro air
vehicles”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). 2014, pp. 4729–4734. doi: 10.1109/ICRA.2014.6907551 (cit.
on p. 5).

[2] Stefano Bonato et al. Ultra-low Power Deep Learning-based Monocular Relative
Localization Onboard Nano-quadrotors. 2023. arXiv: 2303.01940 [cs.RO].

[3] Alessio Burrello et al. “DORY: Automatic End-to-End Deployment of Real-
World DNNs on Low-Cost IoT MCUs”. In: IEEE Transactions on Computers
70.8 (2021), pp. 1253–1268. doi: 10.1109/TC.2021.3066883 (cit. on
pp. 14, 20, 21, 25, 38, 40).

[4] Rene Y Choi et al. “Introduction to Machine Learning, Neural Networks,
and Deep Learning”. In: Translational Vision Science & Technology 9.2 (Feb.
2020), pp. 14–14. doi: 10.1167/tvst.9.2.14 (cit. on p. 8).

[5] Francesco Conti. Technical Report: NEMO DNN Quantization for Deployment
Model. 2020. arXiv: 2004.05930 [cs.LG] (cit. on pp. 13, 15, 16, 25, 33).

[6] Eric Flamand et al. “GAP-8: A RISC-V SoC for AI at the Edge of the IoT”.
In: 2018 IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). 2018, pp. 1–4. doi: 10.1109/ASAP.2
018.8445101 (cit. on pp. 14, 66).

[7] Dario Floreano and Robert J. Wood. “Science, technology and the future of
small autonomous drones”. In: Nature (2015). doi: https://doi.org/1
0.1038/nature14542 (cit. on p. 5).

[8] Amir Gholami et al. A Survey of Quantization Methods for Efficient Neural
Network Inference. 2021. arXiv: 2103.13630 [cs.CV] (cit. on p. 13).

71

https://doi.org/10.1109/ICRA.2014.6907551
https://arxiv.org/abs/2303.01940
https://doi.org/10.1109/TC.2021.3066883
https://doi.org/10.1167/tvst.9.2.14
https://arxiv.org/abs/2004.05930
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/https://doi.org/10.1038/nature14542
https://doi.org/https://doi.org/10.1038/nature14542
https://arxiv.org/abs/2103.13630

Bibliography

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http
://www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 10).

[10] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”. In: CoRR abs/1704.04861 (2017).
arXiv: 1704.04861. url: http://arxiv.org/abs/1704.04861 (cit.
on p. 18).

[11] Andrey Kuzmin et al. Pruning vs Quantization: Which is Better? 2023. arXiv:
2307.02973 [cs.LG] (cit. on p. 12).

[12] Shushuai Li, Christophe De Wagter, and Guido C. H. E. de Croon. Self-
supervised Monocular Multi-robot Relative Localization with Efficient Deep Neural
Networks. 2021. arXiv: 2105.12797 [cs.RO] (cit. on pp. 6, 7, 24, 26, 29,
30).

[13] Shushuai Li et al. An autonomous swarm of micro flying robots with range-based
relative localization. 2021. arXiv: 2003.05853 [cs.RO] (cit. on pp. 2, 5).

[14] Aaron Lopez Luna, J. Martinez-Carranza, and Israel Cruz Vega. “Towards
Aerial Interaction of MAVs in GPS-Denied Environments”. In: 2019 Work-
shop on Research, Education and Development of Unmanned Aerial Systems (RED
UAS). 2019, pp. 113–121. doi: 10.1109/REDUAS47371.2019.8999686
(cit. on p. 5).

[15] Akmaral Moldagalieva and Wolfgang Hönig. Virtual Omnidirectional Percep-
tion for Downwash Prediction within a Team of Nano Multirotors Flying in Close
Proximity. 2023. arXiv: 2303.03898 [cs.RO] (cit. on pp. 6, 7, 24, 28, 29,
41, 44).

[16] Vlad Niculescu et al. “Improving Autonomous Nano-Drones Performance
via Automated End-to-End Optimization and Deployment of DNNs”. In:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 11.4 (2021),
pp. 548–562. doi: 10.1109/JETCAS.2021.3126259.

[17] Daniele Palossi et al. Fully Onboard AI-powered Human-Drone Pose Estimation
on Ultra-low Power Autonomous Flying Nano-UAVs. 2021. arXiv: 2103.108
73 [cs.RO].

[18] Aurello Patrik et al. “GNSS-based navigation systems of autonomous drone
for delivering items”. In: Journal of Big Data 6.1 (June 2019), p. 53 (cit. on
p. 2).

72

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/2307.02973
https://arxiv.org/abs/2105.12797
https://arxiv.org/abs/2003.05853
https://doi.org/10.1109/REDUAS47371.2019.8999686
https://arxiv.org/abs/2303.03898
https://doi.org/10.1109/JETCAS.2021.3126259
https://arxiv.org/abs/2103.10873
https://arxiv.org/abs/2103.10873

Bibliography

[19] Eric Price et al. Deep Neural Network-based Cooperative Visual Tracking through
Multiple Micro Aerial Vehicles. 2018. arXiv: 1802.01346 [cs.RO] (cit. on
p. 6).

[20] Antonio Pullini et al. “Mr.Wolf: An Energy-Precision Scalable Parallel Ultra
Low Power SoC for IoT Edge Processing”. In: IEEE Journal of Solid-State
Circuits 54.7 (2019), pp. 1970–1981. doi: 10.1109/JSSC.2019.2912307
(cit. on p. 13).

[21] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
2018. arXiv: 1804.02767 [cs.CV] (cit. on p. 26).

[22] James Roberts et al. “3-D Relative Positioning Sensor for Indoor Collective
Flying Robots”. In: Autonomous Robots 33 (Aug. 2012). doi: 10.1007/s10
514-012-9277-0 (cit. on p. 4).

[23] Steven Roelofsen, Denis Gillet, and A. Martinoli. “Reciprocal collision
avoidance for quadrotors using on-board visual detection”. In: Sept. 2015,
pp. 4810–4817. doi: 10.1109/IROS.2015.7354053 (cit. on p. 6).

[24] Leticia Oyuki Rojas Pérez and Jose Martinez-Carranza. “Flight Coordina-
tion of MAVs in GPS-denied Environments using a Metric Visual SLAM”.
In: Oct. 2019 (cit. on p. 5).

[25] Manuele Rusci, Alessandro Capotondi, and Luca Benini. Memory-Driven
Mixed Low Precision Quantization For Enabling Deep Network Inference On
Microcontrollers. 2019. arXiv: 1905.13082 [cs.LG] (cit. on p. 33).

[26] Fabian Schilling, Fabrizio Schiano, and Dario Floreano. “Vision-Based
Drone Flocking in Outdoor Environments”. In: IEEE Robotics and Automa-
tion Letters PP (Feb. 2021), pp. 1–1. doi: 10.1109/LRA.2021.3062298.

[27] Eli Stevens, Luca Antiga, and Thomas Viehmann. Deep Learning with PyTorch.
2020. url: https://pytorch.org/assets/deep-learning/Deep-
Learning-with-PyTorch.pdf (cit. on p. 10).

[28] Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A
Tutorial and Survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–
2329. doi: 10.1109/JPROC.2017.2761740 (cit. on pp. 9–11).

73

https://arxiv.org/abs/1802.01346
https://doi.org/10.1109/JSSC.2019.2912307
https://arxiv.org/abs/1804.02767
https://doi.org/10.1007/s10514-012-9277-0
https://doi.org/10.1007/s10514-012-9277-0
https://doi.org/10.1109/IROS.2015.7354053
https://arxiv.org/abs/1905.13082
https://doi.org/10.1109/LRA.2021.3062298
https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf
https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf
https://doi.org/10.1109/JPROC.2017.2761740

Bibliography

[29] Matouš Vrba and Martin Saska. “Marker-Less Micro Aerial Vehicle Detec-
tion and Localization Using Convolutional Neural Networks”. In: IEEE
Robotics and Automation Letters 5.2 (2020), pp. 2459–2466. doi: 10.1109
/LRA.2020.2972819 (cit. on p. 6).

[30] Alexander Woods and Hung La. “Dynamic Target Tracking and Obstacle
Avoidance using a Drone”. In: Dec. 2015. isbn: 978-3-319-27856-8. doi:
10.1007/978-3-319-27857-5_76 (cit. on p. 4).

[31] Hao Wu et al. Integer Quantization for Deep Learning Inference: Principles and
Empirical Evaluation. 2020. arXiv: 2004.09602 [cs.LG].

74

https://doi.org/10.1109/LRA.2020.2972819
https://doi.org/10.1109/LRA.2020.2972819
https://doi.org/10.1007/978-3-319-27857-5_76
https://arxiv.org/abs/2004.09602

	List of Figures
	List of Tables
	Introduction
	Background
	Relative localization of UAVs
	Machine Learning and Neural Networks
	Low-power Implementation of Deep Neural Networks
	Quantization
	Ultralow-power (ULP) hardware architectures

	NEural Minimization for pytOrch (NEMO)
	Deployment ORiented to memorY (DORY)
	Parallel ULP Neural Network library (PULP-NN)
	UAVs and Multirotors

	Approach
	Implementation Workflow
	DNN model architecture
	Dataset and Annotations
	Training and Validation of the Model
	Loss function
	Transfer Learning with real-world Images

	Quantization of the Model
	Testing
	Deploying the Quantized Model
	DORY
	Memory Management and Checksum Tests

	Camera Calibration
	Develop Application C Code

	Results
	Comparison of the FP model with the ID model
	On board inference on a robotic platform
	Setup of Crazyflie 2.1 and AI deck 1.1
	Experimental Setup
	Onboard inference of 100 recorded real-world images
	Inference speed with hardware configuration
	Prediction quality with quantization
	Prediction quality with variation in the input resolution

	Discussion

	Conclusion
	Stagewise quantization performance evaluation
	Additional GAP8 performance metrics of onboard inference
	ONNX representation
	Full ONNX representation of the model with input 320x320 images

	Bibliography

