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I. INTRODUCTION

Tracking for rigid bodies for robotic experiments is cru-
cial, especially when working on advancing motion plan-
ners and controllers. The state-of-the-art are motion-capture
systems from vendors such as VICON or OptiTrack, which
can track rigid bodies with sub-millimeter accuracy at 250
Hz and beyond. These systems rely on infrared markers
(passive or active IR emitters) that need to be placed in
a a-priori known, fixed location on each rigid body. Each
rigid body to track requires a unique marker configuration,
limiting the usability of motion-capture systems to either few
or very large robots. In previous work [1], custom rigid-body
tracking has been introduced as follows: the motion-capture
system outputs a pointcloud of the detected markers, the user
has to provide an initial-guess of the pose of each robot, and
a frame-by-frame iterative closest point (ICP) algorithm is
used to find new poses for each rigid body independently.
Subsequent (unpublished) improvements include a single-
marker tracking mode, where each robot is assumed to carry
only a single marker. Here, optimal linear assignment [2] is
used at each frame, minimizing the total travel distance of
all robots compared to the previous frame.

In this paper, we formalize the general problem where we
want to track multiple robots (or rigid bodies), where some
might be equipped with a single marker (and thus only their
position may be estimated), and others use multiple markers
(and thus the whole pose may be estimated). Surprisingly, the
resulting combinatorial optimization problem is known to be
NP-hard in general. We present two solution strategies that
can solve these assignment problems efficiently in practice:
an Integer Linear Program using a commercial solver, and a
Conflict-Based Search-inspired algorithm and we empirically
validate them. Our work has been already successfully used
in experimental validation of aerial payload transport [3] and
is publicly available as open-source (see footnote).

II. APPROACH

A. Problem Definition

We have N rigid bodies {ri}Ni=1, each of which has Mi

markers rigidly attached to them, i.e., the relative transfor-
mation between the Mi markers and the ith rigid body is
known and fixed. At each time t, we are given the previous
transformation of the rigid bodies in world frame ri.T ∈
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Algorithm 1: Hybrid Update Function
Input: {ri}Ni=1,P
Result: updated transformations T ′

i ∀ri
1 S = {} ▷ possible assignments robot r to group g with cost c
2 foreach robot r ∈ {ri}Ni=1 do
3 if r uses single marker then
4 Pnear = KdtreeNearestSearch(r.T,P)
5 for p ∈ Pnear do
6 c = ∥p− r.T∥; g = {p}; S = S ∪ {⟨r, g, c⟩}; Tr,g = p

7 if r uses multi marker then
8 for j = 0 to L do
9 Tr,g , group = ICP(r.T,P)

10 c = ∥Tg − r.T∥; S = S ∪ {⟨r, g, c⟩}

11 A← optAssignmentWithGroupConstraints(S)
12 for {r, g} ∈ A do
13 r.T = Tr,g

SE(3) ∀i, and a point cloud P ∈ R3P . We want to estimate
the current transformation of each rigid body T ′

i ∈ SE(3) ∀i.
As is common in motion-capture systems, we do not

assume any knowledge about dynamics, although a first-
order filter might be used to reject outlier transformations.
Note that the point cloud P is often noisy, i.e., might not
contain all markers or contain spurious additional markers.

The prior existing solutions handle the case where Mi ≥
4 [1] or Mi = 1 (unpublished single-marker tracking). Here,
we do not make such assumptions and allow mixed Mi.

B. Multi-Robot Tracking

Our solution approach has two parts: first, we generate
a number of potential assignment of the robots to groups
of markers with an associated cost. Second, an optimal
assignment problem is solved that minimizes the sum of
the costs. The pseudo code is given in Algorithm 1. For
the first part, the potential assignments for rigid bodies with
a single marker are all points that are near the previously
known location of each robot, where near can be the full
point cloud or using a first-order filter (Lines 3 to 6). The
cost is the L2 norm with respect to the previous estimate,
the “group” is the single marker considered, and the solution,
if assigned, is the position of that single marker. Similarly,
for cases where the whole pose can be recovered, we run
iterative closest point (ICP) L times to find potential marker
groups g and the resulting transformation (Line 9).

The output of the first phase is a set S that contains tuples
⟨r, g, c⟩, where r is the rigid body to track, g is a set of
markers that belong to the robot (a marker “group”), and c
is the cost if the marker group is assigned to the robot. The
resulting set is used to define an optimal assignment problem
with group constraints, as formally introduced next.
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C. Optimal Assignment with Group Constraints

Algorithm 2: CBS-based solution
/* Main changes compared to CBS are highlighted. */
Input: {ri}Ni=0, {gi}Gi=0,C
Result: A

1 S ← Node(solution : ∅, constraints : ∅) ▷ Root node
2 S.solution←MFMC({ri}Ni=0, {gi}Gi=0,C)
3 S.cost← GetSolutionCost(S.solution) ▷ Update cost
4 O ← {S} ▷ Initialize open priority queue
5 while |O| > 0 do
6 P ← PriorityQueuePop(O) ▷ max agents & Lowest cost
7 t← FindConflict(P.solution) ▷ multiple assigned tasks
8 if t = ∅ then
9 return P.solution ▷ New solution found

10 else
11 Ct = {g|t ∈ Gg ∀g ∈ {1, . . . , G}}
12 foreach g ∈ Ct do
13 D = Ct \ {g} ▷ Extract constraints
14 P ′ ←Node(∅, P.constraints ∪ D)
15 P ′.solution←

MFMC({ri}Ni=0, {gi}Gi=0 \ P ′.constraints,C)
16 P ′.cost =GetSolutionCost(P ′.solution)
17 PriorityQueueInsert(O, P ′)

We consider a variant of the optimal linear task assignment
problem, where each agent picks a set of tasks (rather than
an individual task) and has to serve all of them. Formally,
we have N agents and G task groups with a cost matrix
C ∈ RN×G. Each group consists of a set of tasks, i.e., Gi =

{t1i , t2i , . . . , t
|Gi|
i }. We want an assignment N 7→ Gi (in form

of a binary matrix A) from agents to groups, such that: i)
the number of assigned groups is maximized, ii) the overall
cost is minimized, iii) each task is at most assigned once.

For i) and ii), we add N additional special groups with a
high cost (cng = c∞∀g > G), indicating “no assignment”.
Let the set of all tasks be T =

⋃G
i=1 Gi. Then for a task

t ∈ T , we can compute the set of groups that contain this
task as Ct = {g|t ∈ Gg ∀g ∈ {1, . . . , G}}. The solution can
be found by solving the optimization:

min
N∑

n=1

G+N∑
g

cngang s.t. ang ∈ {0, 1} ∀n ∀g, (1)

N∑
n=1

ang ≤ 1 ∀g,
G+N∑
g=1

ang = 1 ∀n, (2)

N∑
n=1

∑
g∈Ct

ang ≤ 1 ∀t ∈ T . (3)

Here, the first constraint ensures that each group is as-
signed to at most one agent; the second constraint ensures
that each agent is assigned to at exactly one group (po-
tentially the artificial “no assignment group”), and the last
constraint ensures that each task is at most assigned once.
This formulation is a rectangular assignment problem with
conflicts, which is known to be NP-hard in the general
case [4] and can be solved with Mixed-Integer Programs
or Branch-and-Bound solvers [5].

This optimization can be solved using an ILP solver such
as Gurobi [6] or a graph-search-based algorithm, inspired

TABLE I
CBS VS ILP/GUROBI ON SYNTHETIC DATA.

L T N Alg: Gurobi (ms) Alg: CBS (ms)

3 3 5 0.533 0.266
3 3 10 0.797 0.825
3 3 15 1.136 2.577
3 4 5 0.486 0.241
3 4 10 1.082 0.713
3 4 15 1.538 6.200
3 5 5 0.930 0.135
3 5 10 1.386 1.474
3 5 15 1.587 6.054

TABLE II
PERFORMANCE ON REAL DATA.

N M
Runtime

t (ms) ≥10 ms CBS part

2 2× 4 = 8 0.29 0.14% 3.0%
3 1× 4 + 1× 3 + 1× 1 = 8 0.19 0.07% 4.7%
4 4× 1 = 4 0.02 0.00% 64.2%
4 2× 4 + 2× 1 = 10 0.30 0.12% 5.7%
4 4× 4 = 16 0.42 0.11% 3.5%
8 4× 4 + 4× 1 = 20 0.42 0.12% 6.4%
8 4× 4 + 1× 3 + 3× 1 = 22 0.56 0.26% 5.2%

by Conflict-based Search (CBS) [7], an algorithm more
commonly used for multi-agent path finding (MAPF). We
use a two-level search, see Algorithm 2. On the low-level,
we compute optimal assignments without constraints (3),
which can be efficiently solved for example using a max-
flow-min-cost (MFMC) formulation. On the high-level, we
identify conflicts, i.e. any assignments that lead to double-
assignments of a task. We then impose constraints to not
include this assignment for each affected group assignment.

III. EXPERIMENTS

To benchmark the efficiency of CBS-based assignment and
Gurobi solver, we generate a synthetic dataset with varying
numbers of agents, task groups, and tasks per group. L
is the maximum number of groups under one agent ri. T
represents the maximum number of tasks in Gi. N indicates
the maximum number of agents in one test. As shown
in Table I, the CBS-based assignment is faster when the
scenario is simple, while Gurobi is faster in others.

In Table II, we conduct motion-capture tests with varying
numbers of robots and marker configurations. The results
show that CBS-based assignment achieves a median runtime
below 1 ms across all tested configurations, with CBS
contributing only a small fraction of the overall computa-
tional cost. Additionally, the fraction of frames exceeding
10 ms processing time remains negligible, ensuring real-time
performance.

IV. CONCLUSION

We provide algorithms and software to track teams of
robots with a motion-capture system. Unlike the vendor-
specific software, our approach can use identical marker
configurations on each robot, and supports cases where only
the position, not the full pose, is required. Our approach is
available as open-source standalone and as a ROS 2 package.
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